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Optical interferometry

Interferometer is an instrument design to exploit the interference of light and fringe 
patterns that results from the optical path difference .patterns that results from the optical path difference . 

Interferometers are extended  to acoustic and radio waves as well. 

Here we will explore two kinds 

1) Michelson‐Morley Interferometer, a two‐beam, amplitude division device.1) Michelson Morley Interferometer, a two beam, amplitude division device.

2) Fabry‐Perot interferometer a multiple beam, amplitude division device 
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The Michelson interferometer (1881)
Used in applications such as proving special theory of relativity, measuring hyperfine structure 
i li id l ff f h h h P i i l f i i h i h hin line spectra, tidal effect of the moon on the earth. Principle of operation is shown in the graph. 
I

p

n the graph of the interferometer the path difference between the beams traveling along the two 

perpendicular paths is: 2 cos   (see the fig. b) where  measures the inclination of the d θ θΔ =

beam with re

p

spect to the optical axis. 
For normal beam 0

2  for 0,1,2,3,... 
2

d m d m m

θ
λλ

=

Δ = = → = =

The device has 
two optical axis 
at right angle 

p 2
will form constructive interference and will 
repeat every /2 so long as  separation 
stays smaller than the coherence

cd Lλ <
length.

Movable mirror 

y g
Compensator

Fixed mirror 

Beam splitter
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Fringe analysis of Michelson interferometer

Now the optical system is equivalent of the plane air film and the fringes of equal inclination 
f d d b i d b l ki h h h h 4 i l i h hare formed and can be viewed by looking through the path 4 or using a telescope in that path. 

Fringes ar

2
0

e made up of concentric circles centered around the optical axis with intensity of 
2I=4I cos  where the phase difference is  and 

2 p rkδ πδ
λ

⎛ ⎞ ⎛ ⎞= Δ = Δ Δ = Δ + Δ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠2

Here we have a relative  phase shift betw

λ

π
⎝ ⎠ ⎝ ⎠

een the two beams because the 
reflection coefficient from two sides of the mirror differs by 1

1

ie π

λ

− =

⎛ ⎞12 cos
2 2

2 cos ,  0,1, 2,... for dark fringes.

p r d m

d m m

λθ λ

θ λ

⎛ ⎞Δ = Δ + Δ = + = +⎜ ⎟
⎝ ⎠

= =

2dThe center fringe is dark. For t max
2he normal rays at the center 2  and m  is order of 

central dark fringe and outer fringes have lower orders. We invert the fringe order for convenience 

dd mλ
λ

= =

2d
maxby interoducing another integer p m m= −

( )

2 2

2 1 cos  where p=0,1,2,3,.. dark fringes

Now the central fring's order is zero

d m p d m

p d

λ λ
λ

λ θ

= − → = −

= −
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Now the central fring s order is zero.
When optical path difference is decreasing the fringes move inward and disappear at the center.
When optical path difference is increasing the fringes originate at the center and move outward.



Fringe counting with Michelson interferometer
Wavelength and distance measurementg

When optical path difference is decreasing the fringes move inward and disappear at the center.
When optical path difference is increasing the fringes originate at the center and move outward
A smaller mirror spaceing leads to an increase in angular separation  for a given fringe interval.

2 cos ,  0,1, 2,... for dark fringes.

2 sin

d m m

md m

θ

θ λ

λθ θ λ θ

Δ

= =

Δ
Δ Δ → Δ

Differenciate  with respect to m

2 sin  
2 sin

th

d m
dθ

θ θ λ θ
θ

Δ = Δ → Δ =����	���


( )
is means for a smaller optical path difference the fringes are more widely separated.

When / 2 standing waves form then cos the entire field encompasses oned mλ θ= = →( )
max

When / 2 standing waves form  then cos  the entire field encompasses one 
fringe or m =1.

For a mirror translat

d mλ θ →

2ion  the number of fringes passing the center (cos 1 and )  is dd mθ
λ

Δ = =

2  in all of these senarios  is constant and we are playing with finge number and .

This suggests an experimental method t

dm d

λ

λ
λ
Δ

→ Δ =

o measure small mirror movements with a known orλ
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This suggests an experimental method to measure small mirror movements with a known  or 
measure  when  is known.d

λ
λ Δ



Applications of the Michelson interferometer

1) Measurement of thin film thickness1) Measurement of thin film thickness
2) Measurement of index of rfraction of a gass filled in a cell of length L placed in one arm of the 
interferometer. The fringe count m is done as the gas is evacΔ uated fromt the cell. The optical path 

λ λ( )

( )

difference is: - 1 1
2 2

3) Measurement of temperature of a gas or index change as a function of temperature. You need 
to know for the mate

d nL L L n m n m
L

T f n

λ λ
Δ = = − = Δ → = Δ +

= rial to use it( )to know  for the mateT f n= rial to use it. 
4) Determination of the wavelength difference between two closely spaced spectral lines  and ' 

or  and ' used in the lab to measure the difference between the wavelengths of the so

λ λ

ν ν dium yellow 
li T ki d f f i b b d ith th Mi h l i t f tlines. Two kinds of fringes can be observed with the Michelson interferometer. 

1) when the mirrors are absolutely perpendicular to each other virtual fringes of equal inclination

are observed. 

( )2) When the mirors are not quite perpendicular small deviation , an air wedge appears between the 

mirrors and fringes of equal thickness may form localized at the mirrors that appear as straight lines 

parallel to the intersection of the two mirrors. For large deviations the fringes appear as hyperbolic 
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p g g pp yp
curves.



Variations of the MichelsonVariations of the Michelson 
InterferometerTwyman‐Green  Testing of a prism and lens for 

variations in their index of refraction 
or surface imperfections.  

Point source with a 
collimating lenscollimating lens

Fringes of equal 
thickness (parallel 
lines) appear that 
show imperfections 
of optical systems 
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Fringes boost interferometer resolution http://optics.org/cws/article/research/38395
A recent article on increasing resolution of the measurements by interferometry



Fringes of equal thickness in neighborhood of a candle by Michelson 
Interferometer
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Mach‐Zehnder Interferometer
Used in aerodynamic research. 

It uses two beam and amplitudeIt uses two beam and amplitude 
splitting. 

Advantage over Michelson 
interferometer is possibility of making 
fringes at the object of study so that

Test 
Chamber 

fringes at the object of study so that 
both can be photographed together. 

Identical 
Chamber 
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The Fabry‐Perot InterferometerThe fabry-Perot interferometer is composed of two semi-transparent parallel plates. Very simple in 

structure but a very precise measurement tool. The interference pattern is composed of superposition 

of the multiple beams of transmitted and reflected light.
Applications: precision wavelength measurements, hyperfine spectral structures, .measuring refractive 

indices of gasses, calibration of the standard meter in terms of wavelength.
The interferometer is composed of the inner surfaces of the cavity mirrors that usually polished to /50 

and coated with silver or aluminium layer ~50nm. Outer surfa

λ

ces are cut at small angle so that reflection 
from them does not interfere. When the mirror spacing is fixed the cavity is called etalon.

The beam from source S generates multiple 
cohernt beams in the interferometer the 
emerging rays are brought together at P.
The path difference between the succesive 

beams is 2 cos , for air 1

2 or no effect on the interference.
p f i fn d nθ

π

Δ = =

Δ =

Cavity

2  or no effect on the interference. 
The condition for bright

r πΔ
 fringes is 

2 cos

The fringe pattern concentric rings
id mθ λ=
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The fringe pattern, concentric rings, 
are the fringes of equal inclination. 



Different arrangements of the Fabry‐Different arrangements of the Fabry
Perot interferometer

a) Extended source and a fixed plate spacing. Circular fringe pattern. 

b) Point source and a variable plate spacing A detector records intensity as ab) Point source and a variable plate spacing. A detector records intensity as a 
function of the plate spacing. With a laser sources the lenses are not needed. 
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Fabry‐Perot transmission: the Airy function
 Goal: calculating the irradiance transmitted through a Fabry-Perot interferometer. Two identical mirrors 
separated by a distance  that have real reflection and transmission coefficients ,   and no d r t absorption sop y ,

2 2

p

1.  Cavity roundtrip-time 2 / 2 / . We want to express the transmitted electric field  
in terms of incident electric field .
Propagation factor is the ratio of a taveling mon

T

I

r t d V nd c E
E
τ+ = = =

( ) ( )0 0ochromatic plane wave with electric field ,  to ,E z t E z tp g g ( ) ( )
( )

( )

( ) ( ) ( ) ( )0 0

0 0

0 0

0 0

0 0 0

p

,
 For the traveling plane monochromatic wave with no change in optical media

,

,

F

i t t k z z

E z z t t
P

E z t

E z z t t E eP t
ω⎡ ⎤+Δ − +Δ⎣ ⎦

+ Δ + Δ
=

+ Δ + Δ
Δ Δ ( )-i t k zωΔ Δ( ) ( )

( )
0

0 0

,
,FP z t

E z t
Δ Δ = = ( )

( )

( ) ( )

0 0
0

0

1 01

Right-going electric field incident on cavity from the left 

Amplitude time-dependent  of intercavity right-going electric field 

i t kz

i t
I I

i t

e
E e

E E e

E E t e

ω

ω

ω

−

+ +

=

=

=

At time  the right-going t τ+

( ) ( ) ( ) ( )2
1 1

Incident field transmitted The right-going intercavity field that existed at
through mirror 1 mirror one cavity round-trip time 

intercavity field is sum of two parts
2 ,I FE t tE t r P z d t E tτ τ τ+ ++ = + + Δ = Δ =��	�


 earlierτ

������	�����


( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

-22
01 0 01

2
01 01 01 01 0 01

After some time the intercavity field will settle to a 

steady-state value then  and 

i t i t i kdi t
I

i t i t i t
I

E t e tE e r E t e e

E t E t E E e tE e r E e

ω τ ω τ ωτω

ω τ ω τ ω

τ

τ

+ ++ +

+ ++ + + + +

+ = +

+ = = = + ( )-2i kde ωτ
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01 02

2 where 2 2  is the round-trip phase shift.
1 Ii

tE E kd d
r e δ

πδ
λ

+
−= = =

−



Fabry‐Perot transmission: the Airy function

 Goal: calculating the irradiance transmitted through a Fabry-Perot interferometer. 

( ) ( ) ( ) ( )

01 02

/ 2
0 1

 where 2  is the round-trip phase shift.
1

/ 2 , / 2

Ii

i t
T T F

tE E kd
r e

E t E e tP z d t E t

δ

ω τ

δ

τ τ

+
−

+ +

= =
−

+ = = Δ = Δ = ( )/ 2 / 2
01

i i tte E eωτ δ ω− +=� 

+
01Portion of E ( )t

( )

 that is transmitted through 
the mirror 2 after propagating the length of the 
cavity in half round-trip time or /2

2 / 2 2 / 2

0 02 2/ 2
1 1

i i
i t

T I Ti i

t e t eE t e E E
r e r e

τ

δ δ
ω

δ δτ
− −

− −+ = → =

������	�����


0IE
1 1r e r e− −

( )( )
( )( )

*
0 0

2 / 2 * 2 / 2
0 0

2 2

Irradiance T T T

i i
I I

i i

I E E

E t e E t eδ δ

δ δ

− +

∝

( )( )

( )

2 2*
0 0

* *
0 0 0 0

224

1 1
Transmitance 

1

i i
T TT

I I I I I

r e r eE EIT
I E E E E

rt

δ δ− +− −
= = =

−( ) ( )4 2 4 2

1
Transmittance of a parallel plate from chapter 7

1 2 cos 1 2 cos

The Airy f

T

rtT I
r r r rδ δ

= = =
+ − + −

2
2

2

1unctoin  where we used cos 1 2sin
4 21 i

T
r

δδ
δ

= = −
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Coefficient of Finesse

( )
( )

2

22

4Fabry called  the coefficient of finesse. whith that the Airy function can be expresses asrF r =( )
( )

( )
( ) ( )

22

max

2 min

1

1 for sin /2 01The Airy functoin: 
1/ 1  for sin /2 11 sin

r

T
T

T FF

δ
δ δ

−

⎧ = =⎪= ⎨
= + = ±⎪⎩+ ( ) ( )1 sin

2
Coefficient of fines

F ⎩+

( )
( )

,max ,min max min

se is a very sensitive function of the reflection coefficient . For 0 1  0

1 1/ 1
Fringe contrast  the larger the fringe contrast the better the cavity.

1/ 1
T T

r r F

I I FT T F
I T F

< < → < < ∞

− − +−
= = = =

( ),min min

g g g y
1/ 1

F
TI T F+

ringe contrast Coefficient of finesse

Note the difference between fringe visibility, 

F= =

( )
( ) ( )

,max ,min

,min

max

and fringe contrast 

Regardless of ,  1   2

d / /

T T

T

I I
I

r T is at mδ π

δ

−

= =

( ) ( )min

m1

and 1/ 1  at 1/ 2 2  
and lim

r

T F m
T

δ π

→

= + = +

in 0 is never zero but appoaches it 

as r 1. The fringes become very sharp compared 

=

→
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to the Michelson interferometer. 



Finesse

( )
2 2

22 22

4 4Finesse of a cavity:  is different than the coerfficient of finesse: 
2 1 1

F r rF
r r

π π
π

= = =
− −

FF =

separation between the transmitance peaksGoal: showing that the finesse 
Full width at half maximum of

F =

( ) ( ) ( )2 2 2 2

 the peaks
1 1Transmittance of a cavity 

1 sin / 2 1 4 / sin / 2

FSR
FWHM

T
F δ π δ

=

= =
+ + F( ) ( ) ( )

( )
( )fsr 1

Free spectral range FSR  of a cavity: the phase separation between the adjacent transmittance peaks.

1 2 2 2

Ha
m m m mδ δ δ π π π+= − = + − =

( ) 1/ 2lf width at half maximum HWHM   of the transmittance peak can be found by setting:δ( )

( ) ( )

1/ 2

2 2
2 2

2 22 2 2

1 1 4 sin 1 sin
2 2 2 41 4 / sin / 2

Phase of a maximum is 2  and half-maximum 

T

m

δ δ π
ππ δ

π

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞= = → = → =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟+ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

F
FF

1/ 2just after of a maximum has a phase of 2mδ π δ= +
2 2

2 21/ 2 1/ 2 1/ 2

1/ 2

sin sin  
2 2 2 2

For the narrow transmission peaks  is small.

This approximation is good for cavities wit

m δ δ δ ππ

δ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ = = ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠

�
F

hThis approximation is good for cavities with 
high reflectivity mirrors the finesse is high and  

the transmittance peaks are narrow. 

2/ fsrδπ πδ π= → = = =F F
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1/2
1/ 2 1/ 2

/  
2

Thus finesse of a cavity is the ratio of FSR and FWHM of the cavity transmitt

FWHM
δ π

δ δ
= → = = =F F

ance peaks.



Finesse as a figure of merit

( )
2 2

2 22

4 4Coerfficient of finesse: rF = =
F

( )2 22

2
1/ 2

1

2The figure of merit finesse:  
2 1 2

fsr

r

F r
r FWHM

π

δπ π π
δ

−

= = =
−

F =

The transmittance is function of round-trip phase shift  which in-turn is a function of 

,  Mirror sd

δ

pacing (cavity length)
, Frequency One of these are varied in different modes of operation.ν

⎫
⎪
⎬
⎪, Index of refraction of the inter-mirror material

As a result FWHM and FSR change by varying the indepe
n ⎪

⎭
ndent variable. But their ratio, finesse of the 

cavity, stays constant. That is why finesse is a good figure of merrit to identify a cavity. 

lim
Finesse only depends on the reflectivity of the mirrors 

( )

0

1

0

lim

FSR 2 f diff t d f ti d t i ti i diff t t

r

r

δ

→

→

=⎧⎪
⎨ = ∞⎪⎩

F

F

( )

fsr

FSR =2  for different modes of operation corresponds to variations in different parameters: 
 is the free spectral range of a variable length Fabry-Perot interferometer.

 is
fsrd

δ π

ν  the free spectral range of a variable input frequency Fabry-Perot interferometer.
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fsr fsr2  is the free spectral range of a variable input wavelength Fabry-Perot interferometer.cλ ν
λ

=



Scanning Fabry‐Perot Interferometer
The cavity length can be changed by moving one of the mirrors of a Fabry-Perot interferometer. 
This can be used to measure wavelength of a monochromatic source

max

This can be used to measure wavelength of a monochromatic source.
At maximum transmission T  the phase d

N

ifference between the interfering waves is:
22 2 2   0, 1, 2,...kd d m mπδ π
λ

= = = = ± ±N
Round-trip 
phase gain

m 1  and 
2 2fsr m md m d d d

λ

λ λ
+= = − =

For more accurate measurements this 
is not good because the best actuators 
(piezoelectric) have have ~ 10  nm
accuracy. 
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Scanning Fabry‐Perot Interferometer
1 2 We can send two wery closely spaced wavelengths  and simultaneously into a Fabry-Perot cavity.λ λ

1

Nominal length of the cavity 5

Nominal wavelength of the cavity =500 nm is very close to the  a

d cm

λ λ

=

2 nd  and by slight adjustment 

of the cavity length we get the FSR of both wavelengths. We have to make sure both transmission 

λ

1 1

2

peaks correspond to the same mode order then we can write: 
2 /

m
d mλ

λ
=
=

( ) ( )2 1 2 1
2 1 1 1 2

2 2
2 / 2 /

dd d d
d m m d d

λλ λ λ
λ λ

⎫ Δ Δ
− = Δ = − = Δ → =⎬

⎭

1 1It is hard to know absoloute wavelength and length of the cavity but we can replace the  and  
with the nominal values  and  and conclude:

d
d

d
d

λ
λ

λ
λ
Δ Δ

=
dλ

The lengths we 
are measuringThe lengths we 

are detecting
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Resolving power of a Fabry‐Perot cavity
minThe minimum wavelength difference that can be determined by a cavity  is limitted by the width of the λΔ min

mintransmittance peaks of the two s. Minimum resolvable between the cavity lengths, d  FWHMλ Δ =

1/ 2 min

1/ 2

of the peaks. 

Resolving criteria is 2

2fsr fsr fsr fsr

d d d
kd d d

d
δ λ

Δ ≥ Δ ≡ Δ

⎫
= = = → Δ = = ⎪F 1/ 2

1/ 2 1/ 2 1/ 2

1/ 2min min

min 1/ 2

2 2 2

2

2

k d d
d

dd
d

d dd d

δ
λ

λ
λ

λ

⎪2 Δ Δ ⎪⎪
⎬Δ Δ ⎫= ΔΔ Δ⎪ ⎪= =⎬ ⎪⎪Δ = Δ ⎪⎭ ⎭

F F

min

2
2= Resolving power 

d
d m

λ λ
λ

λ
λ λ

⎭ ⎭
Δ

=

=
Δ

F
F

R = F of a FP cavity
minλ λΔ

2Where  is the mode number associated with the  

nominal  and  of the cavity. Large resolving power corrsponds to: 

dm

d
λ

λ

=

1) higher modes that means large mirror spacing  can't change 
2

d m λ
= ( )

2

 much

2) large finesse that is achieved by  as close to 1 as possible 
1

rr
r

λ

π
=

−
F
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6Good Fabry -Perot interferometers have resolving powers as high as 10  
about 2 order of magnitude better than prisms and

∼
 gratings.



Resolving power of a Fabry‐Perot cavity (maximum)

maxThe maximum wavelength difference that can be determined by a cavity  is limitted by the λΔ

1 2

2 1

overlap of the mth order transmittance peak of  and 1th order transmittance peak of .

2 2

m

d m m m

λ λ

λ λ

+

Δ
Δ = − = 1 2 between  and 

2
λ λ λ

λ λ λ( ) 1 1 1
1 11  between  and 

2 2 2
Difference in cavity length associated with adjacent paeks has to be equal to the FSR of the 

variable length interferometer

fsrd m mλ λ λ λ λ= + − =

1

variable length interferometer 

2 2fsrd d m λλΔ
Δ = → = → Δ

( )
max

max 1
min

//
/

A h d f f h fi hi h fi i i h bili l

mm
m

λ λλ λ
λ λ

λ

Δ
≈ → = =

Δ

Δ

F
F

F max

min

 Another good feature of the finesse: high finesse cavities have ability to resolve very 

small wavelength differncescan over a large 
wavelength range.

λ
λ

Δ
=
Δ

F

ma

g g
The λΔ x

max

 is also known as wavelength FSR: 

fsrλ λΔ =
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