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Introduction to aberrations

Gaussian optics or paraxial approximation takes only the first order terms from the sine and
cosine expansion :
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By including higher order terms we experience larger departeures from the prefect image known
as aberration. Third - order aberration theory rises from inclusion of the term with third order
in expansion of sine. The resulting aberrations are known as or Seidel aberrations.

Seidel aberrations for monochromatic light:

1) Spherical aberration

2) Coma

3) Astigmatism

4) Curvature of field

5) Distortion

For polychromatic light there is an additional aberration:

Chromatic aberration that rises from wavelength dependence of the imaging properties of an
optical system or wavelength dpendence of the index of refraction or dispersion.




Ray and wave aberrations
Spherical wavefront: resulting from the Gaussian or paraxial approximation.

Actual wavefront: a surface perpendicular to the sufficiently large number of the rays traced by
accurarte formulas.
Ray aberrations: are defined based on deviations of actual rays from the ideal Gausssian rays.
Longitudinal aberration: LI the 'miss' along the optical axis.
Transverse or lateral aberration: IS the 'miss' on the image plane.
Wave aberrations: are defined based on deviations of the deformed
wavefront from the ideal Gaussian wavefront at various heights from the optical axis.

In this example AB is the wave aberration. W
. . [ — W
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Calculating the lateral aberration
Goal: know the variation in AB as the perpendicular distance from the optical axis, y, changes.

da: the incremental wave aberration expressed as optical path difference in the image space
da=n, (ady)
? =an, is the local curvature of the ideal wavefronat at P.
y
The lateral ray aberration b, and b, along the plane perpendicular to the z axis is given by:

b, =as'= sda and b, =as'= s'da where s'is the paraxial image distance from the wavefront.
n,dy n,dx
. _ _ b s'b, s'b
And the longitudinal ray aberration b, is:b, =——=—2 "~
y tand y+b, y

Aberrations in terms of the |
ideal image parameters.

s'da
p, =32 )
n,dx
s'da
p, =>2
n,dy
5" da | ' Detail
b, = Tangents to the - Actual
n, ydy wavefronts at A -

and B W;
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Third order treatment of refraction at a spherical interface: axial object points

To the first order approximation the optical path lengths of PQI and POl are
identical acording to the Fermat's principle. Beyond the first order approximation
the ray path PQI depends on the position of point Q along the spherical surface.
So aberation is defined as:

a(Q) = (PQI — POI )Opd

o J/

~
Zero if there was no aberration

In triangles PQC and CQIl the | and |"' are exactly:
1 =R*+(s+ R)Z—ZR(S+R)COS¢
1” =R* +(s'- R)2 —2R(s'-R)cos¢
If we use

=(nl+n,l")—(ns+n,s’)

cos ¢ =(1-sin’ ¢)1/2

cos¢:[1—(h/R)2T/2 ~1— -
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Third order treatment of refraction at a spherical interface
1/2

2 4 2
h (st)+h (R3+2s) —>|2=s£1+§—x—j
RS 4R%s”

X

| =s|1+

1/2

h2 R_Sl h4 R—S' . 2
II:S' 1+ ( > )-I- (3 2) —)|2:S 1+X__X_
Rs’ 4R°s"” 2 8
2
We used (1+x)"° e XX
2 8 P ol 4 % 7

When all the terms higher than h* are discarded we get:

) A A 2 - s € s’ >
I:s[1+h (RJ;S)+h (R+s) h*(R+s) } | ATR_, |

2Rs 8R%s? 8R%s*
. ' N2
s 1+hZ(R—s)Jrh“(R—s)_h“(R—Is)
2Rs " 8R3%s" 8R%s*
h?(R+s) h*(R+s) h*(R+s)’ 1 h*(R-s) h*(R-=s) h*(R=s")
a(Q):{nlsllJr éRs2 )+ 8(F2332 )_ ést“) }ans [1+ gRs'2 )+ 8(R3’s'2 )_ i(Sst"‘) D

—(ns+n,s’)
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Third order treatment of refraction at a spherical interface

n[(m ng)_(mp=n | bt (1 1Y m(1 1Y
a(Q):?[(;+?j( R ﬂ SL(SJFRJJFS'(S' j} -

s is the object distance and s' is the ideal image point.

to the Fermat's Principle

-~
This is zero according
2 .
m\m
P & -l

hMin(1 1Y n(1 1Y| .. . .
a ——— | L 24 42 == axial object points.
(Q) 8{5(5 Rj s'( ' R]} Jectp

. J/

y
A
8 /‘/
=
2
3 “
Y

—
Independent of h or system aperture

For paraxial optics h is small enough so that the aberration a(Q) can be ignored.
Conclusion: according to the prediction of the third-order theory wave aberration

for axial object points is proportional to the fourth power of the system aperture.

1fn(1 1Y 1 1Y
a(Q)=ch*| were c==| | =+= | +-%| =—= | function of system characteristics.
8 R

s\s R/ s

a(Q) Is the optical path difference between the actual and ideal rays must correspond to the
wave aberration AB also known as spherical aberration and it is clearly a function of the

distance from the optical axis at which the ray intersects the wavefront.
We will use this approach to get the off-axis imaging.



Origin of the other third order aberrations; off-axis object point

Spherical aberration for the axial pencil of rays is proportional to y. Axis of symmetry is OCI.

Spherical aberration for the off-axial (oblique) pencil of rays is proportional to y .

For the oblique pencil the axis of symmetry is O'Cl " in the absence of E_P.
Note: for the same object distance y' > y and since for the

aberration for the axial rays a oc y*

aberration for the off-axial rays a' oc y"} ~

oblique pencil of rays is far more susceptible to aberration.
We will see application of these principles to designing the lenses.

EP Off-axial pencil of rays

e, -

Entrance pupil

Axial pencil of rays
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Off-axis object point
Consider off-axis pencil of rays from point P.

The aberration function for the point Q on the wavefront: a'(Q) =(PQP'- PBP ')opd = c(BQ)4 =cp"

The aberration function for the point O on the wavefront: a'(O) =(POP'- PBP")

4
oot c(BO) =cb’
The off-axis aberration function: a(Q)=a'(Q)—a'(0)=cp*~ch* =c(p**~b*)

In ABOQ — p'* =r*+Db*+2rbcos@ In AOBC and SCP' > OB =boch'—>b=kh'

Replace p* and b in a(Q) and regroup all the terms

a(Q)=,Cur* +,C;h'r’cos@+ ,C,h " r*cos” 6+ ,Coh“ r* +,C,h°rcosé

The ;C, coenfficients have indecies that are powers of the terms

h':departure from axial image,

r . aperture of the refracting surface,

cosd: indicates the symmetry around the optical axis.

Each term comprises one kind of monochomatic aberration or Seidel aberration as follows:
|

r < spherical aberration |

h'r’cosd <« coma

h?r? cos” @ « astigmatism

h?r? <« curvature of field

h®rcos@® <« distortion =
2/20/2009 Aberra:tion Theory 9
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Spherical aberration

Off-axis aberration function

a(Q) = Cpr*+,Cyh'r’cosd+ ,C,,h " r’ cos® 0+ ,Coh“ r* + ,C, ;h* rcosd

Spherical aberration — ,C,,r* r is the system aperture.
h'r®cos@ <« coma

h*r? cos” @ « astigmatism

h?r? « curvature of field

h®rcos® <« distortion
The only term independent of the h' (departur from axial imaging) so it exists even for paraxial and axial points.
The rays refracted from the extremities of the lens generate two types of spherical aberrations:

, _Sda_s'da
*n,dy n,dr b = 4CuS’ s
, _da 3 ’ n,
a(Q)=,Cyr —>E=40C40r
bz:s'by :s'by . bz:40C40s'2 )
y r n,




Example

Axially collimated light enters a glass
rod through its end. A convex spherical
surface of radius 4 cm. The glass rod
has a refractive index of 1.6. Determine
the longitudinal and lateral spherical
ray aberrations for light entering at an
aperture height of h=1 cm.

R=4cm
h=1cm -

Spherical aberration for axial object points

a(Q):%{%@%}Z—G%M
ifs— oo thena(Q)= _%4{12'(3'_£T:|

We need da/dh to calculate b, and b,

da__ah° (__gjz
dh 8 s'\s" R

Next we need s' the image distance for the system without aberration.
ﬁ+&_n2—nl_> 1 16 0.6

- =2 =22 5 51=10.667
s s oo s' 4
da__ (1) -2 |=-0.001831
dh 10 667 0667 4
p, =392 10867, 401831) = ~0.0122¢m
n, dh
s'b
b, == = 10'567 (~0.0122) = -0.130cm

T

n,=1.6
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Spherical aberration of the thin lenses

El: longitudinal spherical aberration
For a positive lens E falls to the left of I, for a negative lens E falls to the right of |

IG: transverse spherical aberration
At point M, somewhere between E and I we have the best focus.
Image of a point at the best focus point

is called the circle of least confusion. Different image distances due to spherical aberration

O M
1
E |
G
(a)
Different focal lengths due to spherical aberration
S -
. h | fus
> %
> |
g T |
o f—
= |
(b)
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Coddington shape factor of a lens

f is defined for the paraxial rays in a thin lens. As h — oo then %z (n —1)[1—1}
I’—l r2

It is possible to achieve a given f with a different combinations of r, and r,.
We define the Coddington shape factor o as a measure of bending of a lens.

Z MMM

r+r . . : .
o =-2—21 with the usual sign convention for radii: convex +, concave —. -2
rL—n

Example: n=1.50 and f =10cm

o =-2—r,=10cm, r, =3.33cm, meniscus
o=-1-r1, =m, r,=5cm, planoconvex

o =0—r =10cm, r, =-10cm, equiconvex
o=+1— 1, =5cm, r, =00, planoconvex

o =+2—1,=3.33cm, r, =10cm, meniscus

0
+1 +2
© 2007 Pearson Prentice Hall, Inc.
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Minimum spherical aberration condition for bending factor
Spherical aberration of a single spherical refracting surface

- 5[3(3-4] 334

A thin lens is a combination of two such surfaces.
Each surface has a contribution to the total aberration.
s\, —s', . total longitudinal spherical aberration

s', : image distance for a ray at elevation h

Sp

. Image distance for a paraxial ray

2 3
Spherical aberration: s'lh - sl'p = 8hf - n(nl—l){rr]:i o’ +4(n+1) po+(3n+2)(n-1) p* + nn—l}

Where p = E The minimum spherical aberration results when the bending factor is:
S'+5S
2(n*-1
n+2

For s — o« and n =1.50 we get bending factor o = 0.7.

This is close to o of a planoconvex lens o=+1 with convex side facing the parallel incident rays.
In general there is a possibility of cancelling spherical aberration by using two surfaces that have
equal refraction with opposite signs since:

the positive and negative lenses produce spherical aberration of opposite signs.




Coma (resembles comet)

Off-axis aberration function: |a(Q) = ,C,r* +,C;h'r’cos@+ ,C,,h* r*cos® @+ ,C,h* r? + ,C;h* rcos @

Coma represented by: ,C,,h'r° cosé
Coma is an off-axial aberration.
h'=<0and

Cos @ # constant

» Comalic

}image IS not symmetrical about the optical axis.

Coma rapidly increases with system aperture (r®).

Zone: a thin annular region of a lens centered at optical axis.
Comatic circle: is created by all the rays arriving from a
distant object and passing through a zone.

Radius of the comatic circles increas with radius

of the generating zone (figure a). 4
Figure b: fromation of different comatic circles. (a)

Convex lens

Each zone produces a different magnification. .
h,: magnification due to extreme rays. A \ /
h,.: magnification due to central rays. 4 ol 1 |n
Coma may occur in two forms: 2 R,

a positive quantity (h, > h,) 1 /N

h h,

a negative quantity (h, <h,)

‘sl

Image

Maximum extent of a comatic image: 3R, 5 plane

R, is the radius of the extreme comatic circle. (b) ©
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Minimizing coma
For samll objecs near axis, any ray refracted at a spherical surface must satisfy the Abbe sine condition:
Snell's law: nsing =n'sin ¢’

' sin(z— i
From the law of sins in APCM : S1¢ _ (7—¢) _sing

r PC  PC
.. sin@' sing' inf_sin ¢
From the law of sins in AP'CM : _Sing m: = bﬁc
r P'C ]
. . . . . , ; sinf’  sin ¢’
siné _ SING"  ing snelistaw  SING _ nsin ¢ T TpC
r P'C r n'P'C '
napow sing' _ n PCsing e p ‘\k,
r nP'C r o
h P h PC
Also we have _F:% o PC
. . : (d)
sin 0- nhSIn 9 sAirEg?:osndition H Tl 1 )
1 =— Y - >Inhsin@+n'h'sin@'=0 © 2007 Pearson Prentice Hall, Inc.
: .. h' nsiné@
We can rewrite the condition: [m=—=———
h n'sing'
e - . : ... |SIng
To prevent coma all magnifications must be independent of ¢ and that is only possible if |— Py = constant
sin

. | (2n*=n-1)(s-s'
The proper Coddington shape factor for absence of coma: |o=
n+1 S+s'

Example: n =1.50, object at infinity, we get =0.8 very close to the value of minimum spherical aberration 0.7.

Thus we can minimize both spherical and coma aberration simultaneously in one design called aplanatic optics.
2/20/2009 Aberration Theory
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Astigmatism and curvature of field
Off-axis aberration function:
a(Q)= ,Cpr'+,Cyh'r’cosd +

~
Aplanatic optics corrects spherical and coma

12 .2

+h*r?| ,C,,cos” 6+ +,C,h"rcosd
%r_/

Astigmatism
Astigmatism and curvature of field have same
dependencies to:

a) off-axis distance of the object

b) aperture of the system

If we use combination of lenses so that Sand T
image planes coinside on a single plane so called
Petzval surface, we no longer have astigmatism
but the image plane is now curved.
This kind of aberration is called
curvature of (image) field.

2 CZO

—
Curvature of field

The sharp image forms on
a curved surface.

Principal rays
From various
object points

plane

2/20/2009

Object

Focal line for the
sagittal fan of rays ss’
In the tangential pla

Focal line for the
tangential fan of rays tt’

; Circle of
In the sagittal plane |~ ““ "

. .P :
Line image location for
various object points

(a)

lliptical
image

Sagittal fan of rays ss’

Tangential fan of rays tt’

© 2007 Pearson Prentice Hall, Inc.
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Focal line for the
sagittal fan of rays ss’

Astigmatism and curvature of field In the tangential pla

Focal line for the

For two thin lenses the Petzval surface is flat if  5gential fan of rays tt \
i Circle of
nl f1 + n2 f2 =0 In the Saglttal planelcast]:r:(t);fssion

This eliminates the curvature of the field as well.

i k1 1
For k, thin lenses: Z_:_
i1 I fi Re

lliptical
image

where Rp Is the radius of Petzval surface.

We can also use apertures to flatten fields
like in a simple box camera.
For actual flattening the curvature of field
we need 5th order analysis.

Sagittal fan of rays ss’

. P _ Tangential fan of rays tt’
Line image location for

various object points

(a)

S ! 1
:
Principal rays j % ; ;
From various j,i
object points P % A
|
o
negative

Amount og astigmatism for object point P:S(;E
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Distortion

a(Q)= 9C40r4 +,Cyh'r’cosd +h*r*| ,Cy,co8° 0+ :Ca +§C11h'3 rcos ¢
Aplanatic optics corrects spherical and coma Astigmatism Curvature of field Distortion

Distortion exists even if all the other monochromatic

Seidel aberations have been eleiminated.

It is caused by variations of the lateral magnifications

for the object points at different distance from the optical axis.

(a)
Pincushion distortion: if magnification increases with distance from the axis.
Barrel distortion: if magnification decreases with distance from the axis.
The image is sharp but distorted. Can be treated by using stops iﬂ
)

and apertures at approprite locations between the lens and object o

or lens and image.

T
o

© 2007 Pearson Prentice Hall, Inc.
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. . Chromatic aberration for axial object points
Chromatic aberration jectp

Chromatic aberration is not a Seidel aberration. ]
It is caused by variation of refractive index with - s
wavelength or dispersion. I
f, focal length of a lens depends on n and —* : :
n depends on wavelength so f — f (1) —f.,—HI |
fR >!
(a)

TCA

Transverse

LCA
(b) Longitudinal
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Eliminating chromatic aberration
We can eleiminate chromatic aberration by using refractive elements of opposite power.
Goal: finding the proper radii of curvature for an achromatic doublet.
Fraunhofer spectral lines:
A. =486.1nm (hydrogen); A, =587.6nm (sodium); A. =656.3nm;

Dispersive constant of a glass defined as: V = 1 _ b -1 where A is dispersive power.
Ne —Ng
Assume variations of n with A is: 2% = Ne ~Me .
oA A =4 RN '

Power of the two lenses for the sodium yellow line:

1 1 1 1 2
PlD:f—:(nlD _1)[___]:(nm _1)K1 (D 2)

1D r11 r12

1 1 1
P2D :E:(nZD —1)[E—Ej:(n2|} —1) K2 1’12 r22
Total power of two thin lenses with distance L between them:
1:iJri— L —P=P +P,-LRPR,
f f f, ff

Total power of two thin lenses cemented: P =P, + P, =(n, —1) K, +(n, -1) K,



Eliminating chromatic aberration

Total power of two thin lenses cemented: P = (n, —1) K, +(n, —1) K,

If the power of the combination is independent of wavelength, A, to achieve that (6P/6/1)D =0

®_ K1%+ K2%=o with 0 = Me =N
oA oA oA oA A — A
K oNnyp — K (an —Niec J[nw _1j _ Po . K, Ny _ Kz(nz': —Nyc )(nZD _1j _ Poo
1 1 '
oA Ae =2 \np=1) (A -2V, oA e =2¢ \npo=1) (A =2 )V,

8P I:)1D PZD

= +
oA (A — A )V1 (AF A
The powers of individual elements are:

=0 _)V2P1D +V1P1D =0

, v " P 1 1
V,po4Vp 0 | TPy y Kl:nlD—lz[r__r_j
{ 21D 1"1D Ny 2 1 _)4 1D 11 12
P=FP,+P V P 1 1
1D 2D PZD — pD £ K, = 2D _ —
\ V, -V, n,p, —1 N, Iy

"

For simplicity we choose the crown glass to be equiconvex: |r, = -1,

#
The curvature of the cemented surfaces has to match: |r,, =r,|and |r,, = —




Example achromatic doublet:
If 520/636 crown glass and 617/366 flint glass are used in design of an achromat of

focal lenngth, f =15cm, find the appropriate radii of curvature and focal length of the
each lens and combination for the three Fraunhofer lines.

P, =1/0.15m = 6.6667; from the table 20-1: V E R —V, =63.59, V, =36.60
Ne —Ng
P, =P, M, P, =6.6667 0359 _ 15 707052
V, -V, 36.60—63.59
P =Py —2 5P, =6.6667—200____9 0403853
V, -V, 36.60-63.59
K, = Po 15707052 _ 45 19715 | L1 |- 2 r,, = 6.623139cm
n,—-1 1.52015-1 , I, I,
K,=—o 90403859 _ 4 prga009| 1oL
n,-1 161715-1 N, T,

r, =1, =—6.623139cm

r, =1, =-6.623139cm

r, _6.623139
2 T Kr. T 1-(-14.6486029
“K,n, 1-(-14. )(—6.623139)

=(—223.29cm =,




Optical glasses

In design process we take the indexes for the Fraunhofer lines from the manufacturer’s

specification.

TABLE 20-1 SAMPLE OF OPTICAL GLASSES

Type Catalog code |4 ne np ng
np—1 np—1
656.3 nm 587.6 nm 486.1 nm
10V nE—Nge

Borosilicate crown 517/645 64.55 1.51461 1.51707 1.52262
Borosilicate crown 520/636 63.59 1.51764 1.52015 1.52582
Light barium crown 573/574 57.43 1.56956 1.57259 1.57953
Dense barium crown 638/555 55.49 1.63461 1.63810 1.64611
Dense flint 617/366 36.60 1.61218 1.61715 1.62904
Flint 620/380 37.97 1.61564 1.62045 1.63198
Dense flint 689/312 31.15 1.68250 1.68893 1.70462
Dense flint 805/255 25.46 1.79608 1.80518 1.82771
Fused silica 458/678 67.83 1.45637 1.45846 1.46313

2/20/2009
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»—@ fs=1r
Biaea
i i f >|F I
P
|
(a)
PP, PP,
i u Y
: | BIU@ FBZFR
- fa >
N I -
|
(b)
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