Chapter 18
Matrix Methods in Paraxial Optics

Lecture Notes for Modern Optics based on
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Instructor: Nayer Eradat
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Matrix methods in paraxial optics

Describing a single thick lens in terms of its cardinal points.
Describing a single optical element with a 2x2 matrix.

Analysis of train of optical elements by multiplication of 2x2 matrices describing
each element.

Computer ray-tracing methods, a more systematic approach



Cardinal points and cardinal planes

We define six cardinal points on the axis of a thick lens from which its imaging
properties can be deduced.

Planes normal to the axis at the cardinal points are called cardinal planes.
Cardinal points and planes include

First and second set of focal points and focal planes.

First and second principal points and principal planes. The rays determining the
focal points change direction at their intersection with the principal planes.
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Cardinal points and cardinal planes

First and second nodal points and nodal planes. Nodal points of a thick lens or any

optical system permit correction to the ray that aims the center of the lens. Any ray
that aims the first nodal point emerges from the second nodal point undeviated but
slightly displaced.
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Cardinal points and
cardinal planes
All the distances that are directed to the left are negative (-) and directed to the right

are positive (+) by the sign convention. Notice that focal distances are not measured
from the vertices
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Basic equations for the thick lens
i_ nL_nl_nL_n_(nL_n)(nL_n') t

fi R, nR, nn. RR, < t -~
| |
n' | R R.!
f,=——1, forn=n'thenf, =—f i l/‘i : ¥ i
n | : [ | : '
Location of the principal planes: A 4 Y T r Y 2 i
' [

n-n' n —n - ——4 ——4 .
r=—; fit; s=—+ f.t F, V, H, N, H, N, V, F,
nLRZ nLRl n \ : : n, : : : n'

The positions of the nodal points: : | | i
L i

n' n —n' n n -n anal ~—T—
v=|1l-—+-+ t{f: w=|1-—+-—Lt—t|f - L wl
( n nR, j ' ( n'" nR j ? v T
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Image and object distances and lateral magnification:
ns.

—L+£:1 and m =—'—S'

S, S n's,

0 1
The sign convention is as usual (real + and virtual —) as long as the distances are measured
relative to their corresponding principla planes.
For an ordinary thin lens inair:n=n"'=1and r =v, s=w we arive at the usual thin lens equations:
1 1

—+—:£ a_ndm:—i andf=f2=—f1
s. s f S

] | 0



The matrix methods in paraxial optics

For optical systems with many elements we use a systematic approach called matrix
method.

We follow two parameters for each ray as it progresses through the optical system.

A ray is defined by its height and its direction (the angle it makes with the optical
axis).

We can express y,; and o, in terms of y, and a; multiplied by the transfer matrix of
the system.

© 2007 Pearson Prentice Hall, Inc.
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The translational matrix

Consider simple tanslationof a ray in a homogeneous medium.
Translation from point 0 to 1 with paraxial approximation:
a,=a,andy, =Yy, +Ltane, =y, + Lo,

We rewrite the equations:

o] o 5] [

ray-transfer matrix -
fo>r/translation 1‘: > a\: al
0 20
Y1
Yo L >

Y Optical axis
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Refraction matrix

Consider refraction of a ray at a spherical interface (paraxial approximation):
Ray coordinates before refraction (y,«) and ray coordinates after refraction (y', ')

1 1 1 y
o @ A

Paraxial form of Snell's law: n@=n'4"

(a5
n)a

1 y+(

If R — o we have transfer matrix for refration by plane interface: {

n

a+zj_1

and a=0—-¢=0-
4 R

R) R

N

“NTOf
~
~ay
~
~

Optical axis

1 0

o) 2]l

iy
Ray-transfer matrix for refraction
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The reflection matrix

Consider refraction of a ray at a spherical interface (paraxial approximation):
Ray coordinates before refraction (y,«) and ray coordinates after refraction (y',«')

] 1 ] y y
=0'-¢p=0'-—and a=0—-¢p=0——=
o @ A o @ A

Goal: connect (y',a') to (y,«) by aray transfer matrix for reflection by a concave mirror

Sign convention for the angles: (+) pointing upward and (—) pointing downward

a=0+¢=0+LR and a':e'_¢:9-_L

To eliminate @ and &' we use 8=6' we get

a'=0+l=a+ﬂ
R R

The desired equations become:

y=(1)y+(0)a . 10
)yl el |2 4] [x

a':(ﬁjy+(1) a
Ray-transfer matrix / / ~

for reflection
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The thick lens and thin lens matrices

The general Ray-transfer matrix

Goal: construct a matrix that represents a thick lens with two different material on each side of it.
In traversing the lens the ray undergoes two refractions and one translation for which we have
derived the matrices. The radii of curvature are (+) in this example. The symbolic equations are:

yl} =M, {y"} for the first reflection

K 20
% :M{y1 for the translation &—{ys}: M, M, M, {y(’}
—az— 0{1_ a3 M : Transfer matrix 0!0

of the entire lens

Ys :M{y2 for the second reflectiont
0{2_

The individual matrix operates on the ray in the same order in which the optical actins influense the ray.
No comutative propery for multiplication of matricies. Only associative property holds.

M=M,M,M, =(M,M, )M, =M, (M,M,) = M,M,M,

Generalizing the matrix relationship for any number of translating, reflecting, refracting surfaces:

Y+
{ :|:MNMN1“'M2M1
af . J

{yo} withM =M M, ---M,M, ray transfer matrix for the optical system.
M Transfer matrix %o
of the entire lens



The thick lens and thin lens matrices
Goal: Applying the results for a thick lens

Let R represent a reflaction matrix and T represent tsranslation
M=R, TR, the ray-transfer matrix for a thick lens can be written as:

1 0 1 0
. 1t
M = nLl—n nL. {O J n-n_ n
n‘R, n nR n
For a thin lens t — 0 in one environment (n =N ')the ray-transfer matrix becomes
1 0 1 0] | 1 0]
10
M=In-n n 0 1 n-n ni=in-nf1 1
nR, n nR n - n (R, R

We exprss the lower left hand element in terms of the focal length:

i_ n_-nf1 —i the lansmaker's formula
f n (R, R

1

1 0
A B
M: 1 =
T 1 {C D}

the ray-transfer matrix for a thin lens also known as the ABCD matrix.
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TABLE 18-1 SUMMARY OF SOME SIMPLE RAY-TRANSFER MATRICES

Translation matrix:

1 L
M= [0 1 ] =%
Refraction matrix,
spherical interface: O
1 /
M=|pn_-p n|=%
Rn' n'
Refraction matrix,
plane interface:
1 0
M = 0 nr
Fes
Thin-lens matrix:
1 0
M=
1
}L‘

Spherical mirror
maltrix:

—r—~

/<‘\

'
n n

{+R):convex
{—R):concave

n 1

{+f):convex
{—f}:concave

1 0
M= 2 1 R
R
. o v 4
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{+R):convex
(—R) : concave
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Significance of system matrix elements

Y A Bl Y

o, :I - {C D}L{J
a) If D=0— a, =Cy, independent of o, —~
All the rays leavoing the input plane will i

S Axis

%/

i
|

have the same angle at the output plane. Optical ~ Optical

. . elements b elements
Input plane is on the first focal plane. 4
) 1 A=0-> , - Bas e o,
means y, is independent of y, that means Input Qutput Input Qutput

o plane plane plane plane
all the rays departing input plane have the 0 o)
d
same height at the output plane. This means
output plane is the second focal plane.
c) IfB=0—y, = Ay, All the points
leaving the input plane at hight y, will y
| ) n \ ,
arrive _thfa output planc_a at height y, output Optica ) a, Optical
plane is image of the input plane. elements t elements
- i HEi ot === % \

A=y, /'y, corresponds to linear magnification. Opthdl Optical
d) If C=0— a; = De, independent of y, i systcm Output it system Output
Input rays of all in one direction will plane plane plane plane
produce output rays all in another direction. (c) (d)
This is called (thelescopic system). ©2007 Pearson Prentice Hall, Inc.
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Example 18.3

2/20/2009

| R =4cm

Output
plane

X
n' =1.50
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Location of cardinal points for an optical system
Since the system ray-transfer matix explains the optical properties of an optical system we expect a

relationship between the system matrix and location of the cardinal points.

Input and output planes define limits of an optical system.

We define distances locating six cardinal planes with respect to the input and output planes.
F, and F, are at f, and f, from the principal points at H, and H,

F, and F2 are at p and q from the reference input and output planes

r and s are disances of the reference input and output planes from the principal points at H, and H,

v and w are disances of the reference input and output planes from the nodal points at N, and N,

Sign convention:
(+) distance measured to the

right of a reference plane
() distance measured to the

left of a reference plane

Input Output
plane PP, PP, plane
I [
I |
I l\
I [
I [
I [
F, H, | N, Hy N, _- E,
. — —r
| | | | I [
| ,']" | | | |
[ | L | I [
: .~ [ I()phcal] | :
I | system | I I
1 \: : | | i
[ | | I [
1 ' : ' ! g |
} 1%—-?—*4 : L<——S1———ﬂ. :
| c»—————%t}——>4 : LB | [
]‘ f L | " I f &|
| J1 T | I' I 2 il
'—1—[) —9 | | | : —q —b—:
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Location of cardinal points
Input ray (Y,,,) and output ray (y,,0) from figure (a)

Y = Ay, +Ba, D
_)yoz_ — | &

0=Cy, + D¢, C
For small angles ¢, = Yo p= Y% _Db
—p a, C
p is negative that means it is to the left of the n, : ' R ny
input reference plane. il Ak}
_ Y 25 H|i T:’![] J
ao o _—fl Fl : :
.
f Y __(Ayo+Ba0)_AD_B :H:—p—I_ _,-}
' Q o C :1 fl T
Input Output
f o AD-BC Det(M) | n, |1 _ f plane plane
1 - - = h
¢ ¢ pnJC (@

We used: |Det(M)=AD-BC =2
f

n
1 n
r:p‘ﬁ:a{ ‘n_°j=r
f
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Location of cardinal points | PP,
|
. . . |
Using figure (b) we can find q, f,,s — :\
Yo LA T
A 1-A 1 oyl [ e F,
g=——=| |S= ; f2=q—S=—— ‘Ir |
C C C I-(—.i‘—u—q—)-ll
|
Using figure (c) we can find v, w , fy—>
Yo Input Output
Oy =0; =00 =—— plane plane
v ()
Notice y, is negative i.e. below the optical axis
1_ D I I
o =Cy,+Da Y -1"P__, ] /
a U > - — W —e
IR~ e
D-1 (nolnf)—A _ MiAG L/w/ Tyf
v=——"| and |[w= —yol y/' :
C /
Input Output
plane plane
(c)
© 2007 Pearson Prentice Hall, Inc.
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TABLE 18-2 CARDINAL POINT LOCATIONS IN TERMS OF SYSTEM MATRIX ELEMENTS

D \
=— F
P C 1
A
f — T F,
1 C 2
D — ny/n
- ¥ o/ 1 ,
] — { > Located relative to input (1) and output (2) reference planes
§ = - w47 H’)
C B
D-1
1= N,
C 1
no/ng — A
w = % N,
C
n,/ng
fi=p-r=—7" F
i Located relative to principal planes
f,=qg—s§5=—— F
Is =4 C 2

© 2007 Pearson Prentice Hall, Inc.

1) When initial and final material have the same index of refraction thenr =vand s=w i.e.
principal points and nodal points coinside

2) When initial and final material have the same index of refraction then first and second

focal lengths are equal f, = f,

3) The separation of the principal points is the same as separation of the nodal pointsorr—-s=v—-w
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Examples: tow thin lenses in air separated by a distance L

Ta /5

<~ [ ———>

RP RP
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Examples: tow thin lenses in air separated by a distance L
Focal lengths of the lenses f,, f;,

Assume the input and output reference planes are located on the lenses.

The system transfer matrix includes two thin-lens matrices and a translation matrix.

L
1 0 1 0 1-— L
1L fa
M = 1 1 =
-—— 1|0 1||-—— 1 1(1 1 L
fq fq —|—=—-1|-— 1-—
fB fA fA fB
First focal length of the system: f, :% and the second focal length of the system: f, = —é = f,

1 1 1 L

f f, f, f.f,

eq

f
The first principal point and nodal point: r =v = ( feq j L

The second principal point an

A

f
nodal point: s =w :[ feq J L

© 2007 Pearson Prentice Hall, Inc.
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Example

Input Output
plane plane

© 2007 Pearson Prentice Hall, Inc.
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Ray tracing

Limiting analysis of optical systems to paraxial rays is an over simplification of the problem
and ignores effect of aberrations.

Ray tracing is following the actual path of each ray through the system using laws of
reflection and refraction. Traditionally it is done by hand and graphically but today it is all
computerized.

We introduce a ray-tracing technique that is often limited to meridional rays.
Meridional rays are the rays that pass through the optical axis of the system.

Meridional rays tend to stay in the meridional planes as the laws of refraction/reflection
require them.

This limits our treatment to a 2-dimensional space.

Skew rays are the ones that contribute to the image and do not pass the optical axis.
Analysis of the skew rays require a 3-dimensional treatment.

Understanding aberrations require analysis of the non-paraxial rays and skew rays.

Design of the complicated lens systems require knowledge and experience with ray-tracing
techniques and optimizing performance of the system by changing system parameters and
arriving at a perfect performance.



Ray tracing
Goal: followin a meridional ray through a single spherical refracting surface.

n': Indexes of refraction; R radius of curvature; A origin of the ray.
a,a ' angle with optical axis before and after refraction.
O point of intersection with the optical axis; P with the refracting surface; | with the optical axis after refraction.
I & O are conjugate poits with distances s,s' from the vertices.
Q: perpendicular distance from the vertex, V, to the incident ray.
0,0': angles of incidence and refraction.
Sign convention: distances to the left of vertex — and to the right of V are + above the optical axis + and below are —.
From left to right, the angles have the same sign as the slopes.
Input parameters for each ray: h: elevation, « : angle, and -~
D: distance from the vertex parallel to the optical axis.
From figure we write:

S = D—L; in AOBV —>sina:g—> Q=-ssina
tan o -S
in APMC —ssing = 29 Rsing +0
sin9=—a
in AVNC —>sinoc:i Optical axis ,
R . .
|
I L/H | | ,
R -—- ¢ s g
1 L ) i
AtP —>nsin@=n'sind'—|0'=sin" (nsn? j A .
n : |
in ACPI —)9—0{ =t9'—a'—>|0['=t9'—(9+0{| © 2007 Pearson Prentice Hall, Inc.
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Ray tracing

Q" perpendicular distance from the vertex, V, to the refracted ray.

In ACMV —>sin(—a') :%

Q'=R(siné'-sina’)

In APLC — sin(6") = Q;a'

In AITV —>sin(—a'):g,—> - ,
s sina

Now we have the new values for the refracted ray «',Q',s' which prepare us for the next refraction in the sequence.
But before that we need to calculate effect of the transfer by t in the material with index n".

. V.M = .
In AV,MV, —sin(-a, ) = lt :Qlt Q. —1Q, =Q"+tsina,

And |a,=a'

We need to modify the equations
for the special cases: Q'
1) Incident ray is parallel \/

to the optical axis. =
2) Surface is plane with an
infinite radius of curvature.

(a) (b)
2/20/2009 Matrix Methods in Paraxial Qftfe§’ Pearson Prentice Hall Inc. 25



TABLE 18-3 MERIDIONAL RAY-TRACING EQUATIONS (INPUT: n, n’, R, &, h, D)

(General case

Ray parallel to axis: a = 0

h

tan o
O = —ssina

0 = sin”! (% + sin a)
0 S,n_l(n sin 9)
= gi
n'

« =0 -0+a

s=D -

Q' = R(sin §" — sin ')
_Q’

s =
sin «

Transfer: Input: ¢
O=0 +tsinea
a=a

!

n=mn

Input: new n’, R

Return: to calculate 6
2/20/2009

O=h

0 = sin ! (% + sin a)
0 = sin-) (n sin 9)
n'

a' =60 -0+ «a

Q' = R(sin 0" — sina’)

Matrix Methods in Paraxial Optics

Plane surface: R = o0

s =D —

O = —ssina

a’ = sin~

o T2



Example ray tracing

Do a ray trace for two rays through
a rapid landscape photographic lens

of three elements. The parallel rays
enter the lens from a distant object at
altitudes of 1 and 5 mm above the
optical axis. The lens specifications

are:

R, =-120.8
R,=-34.6 t =6
R,=-96.2 t,=2
R,=-512 t,=3

n, =1.521
n, =1.581
n, =1.514

The rays are parallel to the axis so we use the second column of the table

Input

Results ray at h=1

Results ray at h=5

First surface:
n=1n'=1521
a=0

h=1or5
R=-120.8
Second surface:
t=6

n=1.581
R=-34.6

Third surface:
t=2

n=1.514
R=-96.2

Final surface:
t=3

n=1.581
R=-51.2

Q=1
a'=0.1625°
s'=-352.66
Q'=1.0000

Q =1.0170

a'=0.2202°
s'=-264.59
Q'=1.0170

Q =1.0247
a'=0.2030°
s'=—289.26
Q'=1.0247

Q =1.0353
a'=-0.2883"
s'=-205.72
Q'=1.0353

Q=5

a'=0.8128°
s'=-352.53
Q'=5.0010

Q =5.0861

a'=1.1041°
s'=-264.03
Q'=5.0876

Q =5.1261

a'=1.0178°
s'=-288.58
Q'=5.1260

Q=5.1793
a'=-1.4520°
s'=-203.91
Q'=5.1672

There is no common focus As'=1.8mm
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