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Polarization

Polarization of an electromagnetic wave is direction of the electric field vector E.

Mathematical presentation of polarized light: Jones Vectors

Mathematical presentation of polarizers (optical components) : Jones‘ﬁ/latrices
A

Linear polarizer

Phase retarder
Rotators
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Mathematical presentation of polarized light

Electric field of an electromagnetic wave propagating along z-direction:

E, - onei(kz—a)t+¢x) £ _ Re(EX)
2ot and complex field components

E=Ex+E,y with { _ i( R
Ey =E,,e E, =Re(Ey)

o R e O ] e ="l

~ ~ Plane wave

Complex amplitude vector Eg
also contains phase

State of polarization of a wave Is determined by

relative amplitudes and phases of of the components of

E, that constitute a vector dubbed Jones vector:

_ | E«| | E,e"
EO =\ _ = i
E, E,e"

Jones vector are normalized if (Ej, )’ +(E0y)2 =1

Propagation
direction

¥

Z
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Special cases of Jones vector

Particular forms of Jones vector:

¢ =¢,=0

linearly polarized light along a line making an

angle o with the x axis:

~ | Ee® | [Acosa COS |
EO = i = . = A .
E, e % Asin o sina

_ [COS(ﬂ'/Z)

Vertical polarization: Eo =|
sin(z/2) |

g

. L cos(0)| [1
Horizontal polarization: Eo = = 0

sin(0)

~

cos(60°)

1
Polarized at & = 60°%; Eo = - _{

sin(60°)

1
2

J3

|

Conclusionl: The light presented by a Jones vactor that
both of its elements, a and b, are real (not both zero)

iIs a linearly polarized light along the angle

a=tan™(b/a)
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Lissajous Figures
For general case of ¢ =0 and ¢, # 0 the head of the E vector traces an ellipse rather than

a straight line. The relative phase difference of the E, and E  , Ag = ¢, — ¢, determines the

oy’
shape of the Lissajous figure and the state of polarization of the wave.
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LCP and RCP Y

Example: consider electric field of an EM wave that has E;, =E, = A »
and E, leads E, by ¢ = /2. Determine the state of polarization and A
deduce the normalized Jones vectors for this light. _y
We write the complex amplitudes as ? - L
E.=Epe™ {EX = Acos ot 5 = Acosal {Ex = Acos ot i
= —i(wt-¢ - — - _ T\ — i /
Ey=Ey,e ' |E =Acos(awt-¢) |E, = Acos(a)t—zj E, = Asin ot :)P
2 2 2 2 2 o 2 : : “
E°=E +E =A (cos ot +sin cot) = A” the E vector traces out a circle of radius A. X
o Ey =E,, =A _ | Epe” | [A 1
Finding the Jones vector: then Eo = v | = L |=AL {= T/
¢, =0, ¢, =712 E,e” | [Ae” i E, - +4
E =0
Normalization: EoEo=1—> A2 (12 +(ii*)) =2A’ =1 A=1/2 (b)
: L= 111 , : : 4
The normalized Jones vector is: Eo = f _ | We call this a left-circularly polarized AU N
I A
|
light or LCP since when we view this light head-on we see the E, vector tip is rotating 7
counterclockwise on a circle of radius 1/+/2. Figure shows the E, at diffrent times. -
=
.= 111 E, = Asinm/4
If E, leads E, by /2 the E; would rotate clockwise. Eo = T2l E, = A cos w4

()
We have right-circularly polarized light or RCP in this case. © 2007 Pearson Prentice Hall, Inc.




Elliptically polarized light

Example: consider electric field of an EM wave that has E, = A and E,, = B where Aand B

are positive numbers and E, leads/lags E, by ¢ = z /2. Determine the state of polarization

and deduce the normalized Jones vectors for this light.

Ex=E,e ™ E, = Acos ot B = Acosal
- R - 7
Ey=E, e |E,=Bcos(at-¢) |E, = Bcos(a)t—aj
E, = Acos wt
E, =Bsinat

Normalization: EoEo=1—(A*+(iB(iB) )| = A+ B* =1

Jones vector counterclockwise Eo =#{A . }:—1 {A}
JA?1B? | Be"? | A?+B?[IB
Jones vector clockwise Eo :#{A . }:#{A }
JA?+B?|Be™™? | A2+ B?|-iB

EOy

Conclusion 2: the Jones vector with elements un-equal in magnitude,

one of which is pure imaginary, represents an elliptically polarized light.

Figure shows the E, for two cases of E,, > E;, (major axis along y) and
E,, < By (Major axis along x).

(b)
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Elliptically polarized light oriented at an angle relative to x-axis

Example: consider electric field of an EM wave that has E;, = A and E,, =b where Aand B
are positive numbers and E, and E, have phase difference of Ag = J_r(m +1/2)7z and
Ag#xtmr wherem=0,+1,+2,...

Determine the state of polarization and deduce the normalized Jones vectors for this light.
We can assume Ag=¢ and ¢, =0, ¢, =¢

| E,e% | [A A A _ .
Eo = o 1= 1= o = .| Counterclockwise rotation, general case
E,e” | |be“| |[bcose+ibsing| [B+IC

Normalization: EoEo=1->( A” +((B+iC)(B+iC) || = A + B? +C? =1
Jones vector of an elliptically polarized light with major axis inclined at an angle « is:

~ 1 A 2k, E, COs¢
Eo = _ where tan2a = > >
\/Az-i-BZ-I—CZ B+iIC EOx_EOy

and E,, = A, E,, =VB?+C?, e=tan™ (%)

C > 0 counteclockwise /

If A>0 and _
C <0 clockwise

Note: polarization state represented by the Jones vector K — .
does not change if it is multiplied by a constant. So we can always make A > Ouorreesererenre




Usefulness and some properties of the Jones vectors
Two properties of the polarization vector or Jones vector :

1) polarization state of a wave does not change if its Jones vector is multiplied by a constant.

It only affects the amplitude.
2) polarization state of a wave does not change if its Jones vector is multiplied by a constant phase factor e".

It promotes phase of each element by ¢ but not the phase difference A¢.

Example 1: illustrating usefulness of the Jones vectors.
a) Polarization state of a superposition of two waves can be found by adding the Jones vectors:

H ' H ) m

Conclusion: We can generate a linearly polarized light with mixing equal portions of LCP and RCP light.

Example 2: superposition of horizontally and vertically linearly polarized light:

REHER

Conclusion : by mixing equal protions of vertically and horizontally linearly polarized light we can get

linearly polarized light at an angle 45°.



III. Elliptical Polarization
A<B A>=B r
_ M ~ R T
Summary of the polarization (86 = (m + 12) )
. A<HB A=B
states and their Jones vectors — N TN e 1 [al . eoees
o v ~ ° Valrp L7BITTT
~ [Ege Left: E L [ A ] A>0,C>0
TABLE 14-1 SUMMARY OF JONES VECTORS E; = L_ Ye"" } U NVaZipgiyc2 LBHIC ’
o ¥
ma
(Ad} T {(m i 1;’2}17)
I. Linear Polarization (A¢ = mm)
o 1 A
Right: i ; E, = E 5 |:B—iC:| A=0,C=0
General: = ifo N [‘f‘.}s a] A*+ B*+
s o
T £ ; =~ |1
Vertical: E, 1 Horizontal: E, 0
so.f - L |1 _450F = L | 1

At + 45K, = E[J At 45-E0_V§{ 1:|

II. Circular Polarization (Ae& = %)
~ 1 [1
Left: Eﬂ - ﬁ _I:|
Right: Eﬂ e 3 11
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Mathematical presentation of polarizers

c d
There are optical devices that affect (change) state of polarization of the light. Our goal is to represent
each of these devices with a transfer matrix such that multiplying it with the Jones vector of the original
light produces the resulting light.

|:a b:|[onei¢x:| I:Exei¢X] ME E
. = i or 0=
Iy 1y

c dj|E.e Ee

- : : : . a b
We can represent an optical instrument or device by its transfer matrix or abcd matrix: M :{ }

y
TA
: b
' Unpolarized
light
!
|
l Linear
: polarizer
|
| %

Z
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Linnear polarizers

Linear polarizer: it selectively removes virations in a given direction and transmits in perpendicular direction.

Partial polarization: sometimes the process of removing other polarizations is partial and not 100% efficient.
See the figure how the output light is polarized along the transmission axis (TA).

Along the TA: {a ZMO}:_O} _){a(0)+b(1)=o

c 1] [1 c(0)+d(1)=1

Perpendicular to TA: E 3_ B} - B} - {:((11)):2((2)) Zg

The result for linear polarizer along the y axis (vertically) is:

00 10 Y
Linear polarizer, TA vertical > M = {O J. Linear polarizer, TA horizontal > M = {0 0}

Exercise: Derive the polarization matices for the linear polarizer at 45°: TA
= = npolarize
c d i 1 c d -1 0 llght
Polarization same Polarization |
as the polarizer's TA perpendic_:ula'r to |
the polarizer's TA | Linear
: : 0 111 1 | polarizer
Linear polarizer, TAat45": M == |
211 1 '
| /

The most general case of the linear polarizer: |

cos’d  sinéfcos 6’}

sinfcosd  sin’6 .
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Phase retarder

The pase retarder introduces a phase difference between the orthogonal polarization components.
If the speed of light in each orthogonal direction is different, there would be a cumulative phase
difference A¢ between the components as light emerges from the media.

Fast axis (FA): the axis along which the speed of light is faster or index of refraction is lower.

Slow axis (SA): the axis along which the speed of light is slower or index of refraction is higher.

Finding the matrix for retarder: we want a matrix that will transform

Ey e 10 By, and E, 6% to E, e ™)

X

. . . Unpolarized
a b]| Epe” onel(¢X+8X) e 0 light
ig, |~ i(gy+ey) —>M= is Phase retarder Retardation
c d EOye Y EO e\ 0 e” late
- = y N
M ~—

Quarter —wave plate (QWP), a retarder with the net phase difference /2

( izl4
. e 0
£~ &, =~ SA horizontal, let &y =2 and &, =2 sM= )
2 4 4 0 e
) —izl4
) e 0 |z
£, =& = 2 sA vertical, let & = ~Z and £, = +Z M= )
2 4 4 O elﬂ 4
_ A-izl4 l 0 H _ Airld 1 O -
M=e 0 i QWP, SA vertical, M =e 0 i QWP, SA horizontal
i —i

Half —wave plate (HWP): a retarder with the net phase difference

Sx—é‘y‘Zﬂ'

_ A-izl2 1 0 H _ Aiml2 1 O .
M=e o _1 QWP, SA vertical, M =e 0 -1 QWP, SA horizontal
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Phase rotator
The phase rotator rotates the drection of polarization of the linearly polarized light by some angle .

s el

M {cosﬁ —sin S

_ Phase rotator
sinfg cospf

Rotator
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TABLE 14-2 SUMMARY OF JONES MATRICES

I. Linear polarizers

. 1
TA horizontal { 0 0

I1. Phase retarders

0 0 0F

} TA vertical [ 0 1)

TA at 45° to horizontal %{

O 858
- w10 : a1l O
QWP SA vertical e 0 ; QWP., SA horizontal il 0 —i
wml L 0 o1 0]
HWP, SA vertical — ¢™% ' _ J HWP, SA horizontal ™% = 1J
II1. Rotator
Rotator (6—6 + B) [C,OS B = ﬁ}
sin 3 cosf3
© 2007 Pearson Prentice Hall, Inc.
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Example: Production of circularly polarized light by combining
a linear polarizer with a QWP

eizr/4 1 O 1 1 . ei7r/4 1 1
0 —-i| 2|1 J2 )| i
QWI; Linearly\;;olarized The incident Ifgfht is divided y
slow axis  |ight at 45° equally between the slow and
horizontal fast axis and becomes
right-circularly polarized
X
_ir/4 1 O 1 l _iz/4 1 1 Unpolarized
e . — =€ — || . light
0 i| 2|1 J2 )|
QWISf LinearIyT)oIarized The incident Iivght is divided ]
slow axis  [ight at 45° equally between the slow TA -
vertical and fast axis and becomes :

left-circularly polarized  FA
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Example: Left-circularly polarized light is passing through an eighth wave plate

Eighth wave plate is a phase retarder that introduces a relative phase difference
of 27/8 or z/4 between the SA and FA. Assume ¢, =0

e 0 .o 1 0
M= i S 0 e/t
0 e~ g €
N ~ %/_/

Phase retarderl Eighth wave plate
1 O 1 1 1
0 el i - ioi/4 - N
Eighth wave plate Leﬂ—mwrly Elliptically
polarized light polarized light
e37r/4 —_ 1 +i 1
2 2
Eo |_[A where E. =A=1 B=— > andC=—— E ~—+/B?+C? =1and
Eo, | |B+iC o Pt R N
2E,E, cose 0
tan2a =———~—— > a =—-45
0x =0y

A >0 and C>0 so they have the same sign so the elliptically polarized light has
counterclockwise rotation.



QWP

Linearly polarized
E-vector at 30°
with x-axis
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