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Diffraction

Diffraction is any deviation from geometrical optics that results from
obstruction of the wavefront of light.

Obstruction causes local variations in the amplitude or phase of the wave

Diffraction can cause image blurriness. So the aberrations.

An optical component that is free of aberrations is called diffraction-
limited optics and is still subject to blurriness due to diffraction.

Huygens-Fresnel principle: every point on a wavefront can be considered
as a source of secondary spherical wavelets(Huygens). The field beyond a
wavefront is result of the superposition of these wavelets taking into
account their amplitudes and phases (Fresnel).
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Diffraction vs. interference: i T
|
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Diffraction phenomena is calculated | 6 0 ‘[‘
from interference of the waves " 5

originating from different points of a e i i
continuous source. A P
Interference phenomena is calculates

interference of the beams origination
from discrete number of sources.
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Mathematical treatment of Diffraction

Far-field or Fraunhofer Diffraction or : when both the source and observation
screen are far from the diffraction causing aperture, so that the waves arriving at
the aperture and screen can be approximated by plane waves.

Near-field or Fresnel diffraction: when the curvature of the wavefronts an not be
ignored

We will only investigate the far-field diffraction in this course using the Huygens-
Fresnel principle with one approximation.

When EM waves hit the edges of the aperture there is oscillations of the electrons
in the matte that cause a secondary field (edge effect).

In HF approximation we ignore edge effect. So beyond the aperture there is no
field. This holds only if the observation point is far from the aperture.




Diffraction from a single slit

We simulate the geometrical arrangement for the Frounhofer diffraction by placing a point source at the
focal point of a lens and a screen at the focal point of a lens after the amerture. The light reaching point

P on the screen is from interference of the parallel rays from different points on the aperture.
We consider each interval of ds as a source and calculate contribution of the all of these sources.

r . optical path length from the ds to the P

E, strength of the electric field contribution from each point.

r =1, for the field from the center of the slit.

Contribution of each interval ds to the wavefront at point P is a spherical wavelet of dE:

dEP _ (ELde ei(kr-wt)
r

T —
Spherical wave
amplitude A ds

dE, :( E. ds ]ei(k(r0+A)-wt) >
rL+A

|
|
|
. | 9 7
|
dEP _ ELdS ei(kro_wt)eikA _ :\\
LA) S |

Path difference Y

———  affets the phase
Path difference 5
affets the amplitude A

We ignore A in the denuminator
since A <<

le—————— f
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Diffraction from a single slit

dE, = ( ELdS]ei(kroa)t)eikA
o

The total electric field at the point P

_ Bl ik-ot) (P2 _ikssing
E, = LdEP = [, ends

ssing \P/2 i o
B gtaa[ €Y | EL e €0 g 002

I iksin @ —b/2_ I iksin &

With ﬁ:%kb sin @ and using Euler's formula

£ - E.bsing iw,-o)  Ebsincy
p=— — € -
h B o

S varies with @ and that varies with the distance from the screen.

[ can be interpreted as phase difference kA:kgsin 6 — || 8| = kA :%kbsin 0

\ ,B\ shows the magnitude of the phase difference at point P between the points from the center and
either endppoint of the slit.
The irradiance | at P is proportional to the E;:

2 ., 2 a2
I:(ic)EOZ:gOC[ELbJ szﬂ with O:ELCKE—Lbj we have Izlosmzﬂ:losinczﬂ
2 2.\ 1 B

2\ r




Diffraction from a single slit
sin® g

The diffraction pattern of the light from a silt by width of b at a distanc screen | =1, —

= 1,sinc’ where

| 8| =|kA| = (kbsin 8)/2 is the phase difference betwwen the light from the center of the slit the endpoints.

Let's plot the I. For the central maximum: Iﬂingsin c(ﬂ) = LinAKS';ﬂ] =1

For zeros of the sinc function:

sinf=0-p :%(kbsin 0)=mz —bsind=mA wherem==+1+2,...

m =0 does not lead to a zero be cause of the special property of the sinc function.
if f is the distance of the slit from the screen, then the location of the minima on the screen can be found using
small-angle approximation:

sinfd=tand=y/ f _)mT/1:¥_) ym:mT’” 1

sinﬂ] _Bcosp-sing _
P Vs

Cental lobe: image of the slit with roundes edges. g="lging
Side lobes: what causes blurriness in the image.

Angular width of the central lobe: bsind =1 — <

22
b
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For the other maxima: dd (
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Maxima of the sinc function

The maxima of the sinc function are solutions of this equation:
h

,Bcos,,iz—sin,ﬁ _0>tan =7

We can solve this equation by parametrically.

An angle equal to its tangant is intersection

of the {y =p
y=tan g

We see that the maxima are not exactly half

way between the minima. They occur slightly

erlier and as £ increases the maxima shift

towards the center.

Ratio of the irradiances at the central peak

maximum to the first of the secondary maxima?

B=143 7

y=tanf

1.43x

. 2 . 2
Iﬂ:1-43” (Sm ﬂ/ﬂ)ﬂ=1.437r (Sm ﬁlﬂ)ﬂ:l.ﬂf?m
| ;145 =0.0471 ;| oronly 4.7% of the I,

o (SnAIB),, 1 :[

sin(1.437

)
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Beam spreading
The angular spread of the central maximm A& =24/b is independent of the distance between the slit

and screen. So as screen moves away from the slit the nature of the diffraction pattern does not change.
W is the width of the central maximum,

MﬁLAHzE%é

All of the beams spread according to diffraction as they propagate due to the finite size of the source|.

Even if we make them parallel with a lens still they will spread because of the diffraction.
Example:

What is the width of a parallel beam of 4 =546nm and width of |b=0.5mm| after propagation of

10 meter? _ 22

2LA  2x10x546x10°°
b  05x10°

W =21.8mm

A6

W =

This treatment of beam spreading is
2
correct for far-field where L >> %

area of aperture

or more generally L >>

A
)
Y

2
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Rectangular aperture
For a slit of length a and width b we calculate the diffraction pattern. We assumed a>>b in previous section.
When a and b are comparable and both small we have large contriibutions to the diffraction pattern from

. 2 . 2
both dimensions: | = Io[mj where o =(gjasin0 and | = I{%) where ﬂz(gjbsine

(94

— m_/” and x,, = ﬂ mn=+1+2,..
a
Using a bit more analysis we can write E,, = J' dE, = iei("r‘)“’t)jalz g!o/h dijl2 "oy
P P r, -al2 ~b/2

Zeros of the pattern due occur at: |y,

slit
X,Y are the coordinates of the observation point on the screen and x,y are the coordinates of the surface
element on the aperture. The total irradiance turns out to be the product of the irradiance functions on each

dimension: |1 = I, (sinc?g)(sinc’a )

b y \&‘ b
=
;| \ / ‘% B —-==—T
a H_,E: ey FU===
Y i p—
\ X \
Slit aperture k Rectangular Screen

aperture
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Circular aperture
For finding the diffraction pattern caused by a circular aperture we assume the incremental electric
field amplitude at point P due to the surface element dA = dxdy (on the aperture) is E, ,dA/r,.
Then we integrate the incremental field over the entire aperture area. The resulting E at point P is

|
dEP _ [ EAdA)ei(k(r0+A)-a)t) A} Ep _ Eei(kro—wt) J'J' eis.ksint?dA i
|
|

|
|
- |
A=ssiné
ro +A ro :
! dA !

-€ X >

Area

By choosing the elemental area the rectangular area of
dA = xds we can reduce the double integral to a single one.

2
(gj +8°=R* > x=24JR*-5§°

E — 2EA ei(kro—wt)IJ’R eisksinH\/Rz—s2 ds ;e A
i I -R __+I o
Substitutingv=s/R and y =ksiné b |

\
\
\
} 0 7 _T.
E, - 2E,R pi(ko-at) +1eiyv\/1_7dv —— \ |
r, 1 L i
+ . 2 J _T-)— P
From the intergral table: J‘_lle'?”l‘_vdv _ () %

]/ - if >
where J, () is the first order Bessel function of the first kind.

J1(7)=Z—(y/2)3 +(7/2)5 —..- and IimM: 1

2 2 72 0 "
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Field from an arbitrary shape aperture on a distant screen

For finding the diffraction pattern caused by an aperture of arbitrary shape we assume the incremental
electric field amplitude at point P due to the surface element dA = dxdy (on the aperture) is E, ,dA/r,.
Then we integrate the incremental field over the entire aperture area. The resulting E at point P is

EA

E, = ” e “*dA  where dA = dxdy
rO Aperture
2 2 2 1/2 . 2 2 2 1/2 Yk A Y
r:[(X—x) +(Y-y) +Z J with 1, =| X*+Y*+2Z ] ) X
2 2 —1/2 /P
(X +y ) 2( Xx+Yy) r
we have: r=r,| 1+ — > o
o o d 0
w2 Po
2( XX+Y
2 >>x* +y? —>r:r{l— ( 5 y)}
rO
XX+Y
r>>X+y—>|r=r —M only first two terms. Aperture Screen
0 ro

i ot ro_(Xx+Y ) _ _
3 :E ” e( ¢ k( o Y DdA—) €, :%e.(wt_kro) ”‘ elk(Xx+Yy)/r0dXdy
0

r0 Aperture Aperture any shape

For specific shape of aperture the integral limits and relationship between x and y
will change. We will look at two examples of rectangular and circular apertures.



Rectangular aperture

E o :
Ep _Ea el(a)t ki) ”‘ e|k(Xx+Yy)/r0 dXdy
rO Aperture
any shape

E, = iei(a)t—kro)]‘b/z k(Yy)/ 1, dyjalz (X)) e

-b/2 al2
r.0

y y
£, = Es gy [ SiNG a(wj a4 A
I S o - /r _»
. A /
Ep _ AEA el (wt—kry) (Slnﬂ)(smaj dy 5 0
I b a P,
2
AE, .
| — A el(a)t krp) /
0 ( r L
_ 2 . . ) Aperture Screen
L(X,Y)=1(0) sin 3 (smaj
b o
Where |« Kaé Easmé’ and ,Bzhbizkbsine
2 I 2 2 1 2 y
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Circular aperture |

For circular aperture we introduce the spherical coordinates because of the symmetry
of the problem. On plane of the aperture: X = pcos¢, y = psing
On plane of the screen: X =qcos®, Y =qsin®

Differential surface element: dA = pd pd¢

R 2«
Ep _ iei(a)t—kro) J'I eik(Xx+Yy)/r0 dA = iei(a)t—kro) J' j ei(kpq/ro)cos(¢—cb)pd ,Od¢

r-0 Aperture r0 =0 ¢=0

any shape

Wher we used: Yy + Xx = pq(sin ¢sin ® +cos¢cos®) = pqcos(¢— D)

Because of the axial symmetry of the problem, the solution must be independent of ® and

since point P is an arbitrary point on the screen we choose to have ® =0 to simplify things.

a 2w
Ep :Eei(‘”t_k'b) J‘ ,Od,O J‘ei(kpq/ro)cos(gb)d¢

r-0 p=0 =0

~
A tabulated integral. Solution is a
Bessel function of the first kind

_/

Bessel function 1st kind: J,, (u) = 'Z_Joz”ei(mvwcoswdv d
T dy

For m=0:3,(u) = 2 [ and with u = ke
T

R
E, :Eei(m—k%) _[ Jo(ka/l‘O)pdp

rO p:O




Bessel functions of the first kind (MATLAB)

u=(0:0.1:15)
BJO=besselj(0,u);
BJ1=besselj(1,u);
BJ2=besselj(2,u);
BJ3=besselj(3,u)
plot(u,BJO,u,BJ1,u,BJ2,u,BJ3);
Iegend('.JO','J 1','\]2','\]3') | Bfessel functions of first kin‘d
title('Bessel functions of first kind");
xlabel('u’),ylabel('J")

grid on

-0.5
0



Circular aperture Il B

R
E, :Eei(a’t_kr‘J)Zﬂ f Jo(kpqlry) pdp y

o

bessel functions: jouu 'Jo(u')du’=ud,u we get |

eeeeeeeeeeeeeeeeeeeeeeeeeeee

Jo(u')u'du'=(kRq/ry)J, (kRq/ 1)

kRa/ry

R
[ Jo(kpalry)pdp=(r,/ka)" |

u'=0
p=0
EP :Eei(a)t—kro)zﬂ_RZ rO le qu N EP — ZAEA ei(a)t—kro) rO .Jl qu
A kRq A I KRq I
we use |y =KRq/r, = kRsin | and calculate the irradiance at:
2
2 A2 J
I=<(Re(EP)2>:£EPE;—> e { 1(7)}
2 I 4
12 (y12) J
Series expansion oftheJl(y):Z—(y2 ) +(Z 2) — > IimM:E
2 1°2 1°.2°.3 =0y

J, behaves like a damping sin function and J, (» )/ behaves like the sinc function.

I, 5 /\15
Using the one of many properties of the - \/ \/



Diffraction pattern of the circular aperture
with Bessel functions in MATLAB

x=(-15.1:0.5:14.9);
y=(-15.1:0.5:14.9);
A=y.*X;
i_index=0;
fori=-15.1:0.5:14.9
j_index=0;
i_index=i_index+1;
for j=-15.1:0.5:14.9
j_index=j_index+1;
r=sqrt(i"2+j"2);
if r<=5
A(i_index,j_index)=1;
else A(i_index,j_index)=0;
end
end
end
subplot(2,1,1);
mesh(x,y,A);
title('Circular Aperture’)
axis([-15.1 14.9 -15.1 14.9 0 1));
a=1;
kx=(-15.1:0.5:14.9);
ky=(-15.1:0.5:14.9);
[kax,kay]=meshgrid(kx,ky);

ka=sqgrt(kax."2+kay. 2);
Gka=2*pi*a*2.*besselj(1,ka)./(ka*a);
subplot(2,1,2);

mesh(kx,ky,Gka);

xlabel('kx"); ylabel('ky";

axis([-15.1 14.9 -15.1 14.9 -1 4]);
title('Fourier Bessel of Circular Aperture')

Fraunhofer diffraction pattern is the Fourier transform of the aperture function.

We can show this by the following plots using MATLAB. This topic will be
covered in PHYS 258.

1 x*+y?<a 1 r<a
g(xy)= —>9R(r)={
0 Jx*+y?>a 0 r>a

Diffraction patte.rn;.eo-ckn-':rF"('k;;')'¥§2na2P_?éﬂf‘-)}““ 5
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Diffraction pattern of the circular aperture with
Bessel functions in MATLAB

Circular Aperture

18



Diffraction pattern of the circular aperture with
Fast Fourier Transformation(FFT) in MATLAB

%PHYS 258 spring 07, Nayer Eradat
%A program to plot a circular aperture function
%and its Fourier transform using fft and shift fft function Circular aperture
y=(-2:0.05:2);
A=y."*X;
i_index=0;
for i=-2:0.05:2
j_index=0; w 0.5
i_index=i_index+1;
for j=-2:0.05:2 0
j_index=j_index+1; 0
r=sqrt(i"2+j*2); -1 Ry B
if r <=0.2 W H
A(i_index,j_index)=1, fit of Circular aperture
else A(i_index,j_index)=0;
end
end
end
subplot(2,1,1);
mesh(x,y,A); %3D plot
xlabel('x"); ylabel('y"); zlabel('E"; L
title('Circular aperture’);
fft_v=abs(fft2(A));
fft_val=fftshift(fft_v); i )
%shift zero-frequency component to center of spectrum ; -2 fi
subplot(2,1,2); ¥
mesh(x,y,fft_val);
xlabel('fx"); ylabel(‘fy"); zlabel('E");
title('fft of Circular aperture");




Circular aperture diffraction pattern
Circular aperture better than slit or rectangular /

aperture for imaging.First zero of the circular aperture:
y=3.832
Thus for an aperture of diameter D we have

7:%szin 0 =3.832 > Dsin@=1/221

Airy Disc: the diffracted image of a circular aperture

or the central lobe of the diffraction pattern. __ . |
=15
For far-field sin@ = @ and the angular half-width of

T 1.224 Y Iy = (21, (V)ly)?
the Airy disc is: |A8,, = ——— , —
172 D 13 Maximum 0 1
E I ] 15t Zero 3.832 0
m 2" Maximum 5.136 0.0175
The beam spread for a beam (1=564nm) from an 21 Zero 7.016 0
3" Maxi 8.417 0.00416
amperure D=0.5 mm at L=10m. .
) ) o 3" Zero 10.173 0
The diameter of the Airy Disc is: 2 Moo o0 000160
AG,,=1.2221D =1.33x10"rad and then 4% Zero e g
(b)
r, = LAG,, =13mm

© 2007 Pearson Prentice Hall, Inc.
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Resolution and Rayleigh criterion
Rayleigh's criterion for just-resolvable

Images requires that the angular
separation of the centers of the image
pattern be no less than the angular
radius of the airy disc.

Ag. =124

min D
Maximum of one pattern falls directly

under minimum of the next pattern.

X A Rz_idius_ of
- Airy disk

le—r—% (T Y

© 2007 Pearson Prentice Hall, Inc.

© 2007 Pearson Prentice Hall, Inc.

4/30/2009 Fraunhofer Diffraction 21



Diffraction by the eye
Pupil size limits the resolution of image of the objects subtended by AO_..

Pupil

© 2007 Pearson Prentice Hall, Inc.



Double-slit diffraction |
Diffraction pattern of a plane wavefront that is obstructed everywhere but at the two slits shown in fig.

We follow our analysis for the single slit. The diffraction pattern for two slits is going to be superposition
of the patterns by each slit. Therefore we write:

E -@2)ab) E w2)asb)
Ep= | dEpy+ [ dE,, ==t [ elnids =Ll [ glsn?gs

slitl slit2 Iy —(U/2)(a+h) Iy (1/2)(a=b)
E E pilko-a) 1 [ pU/2ik(-a+b)sing _ (1/2)ik(-a-b)sing _(1/2)ik(asb)sing e(1/2)ik(a—b)sin0:|

"o iksin &
With 8 =(1/2)kbsin 6 and « = (1/2)kasin & 'lL
_ E|_ i(kr—at) b ia (AIf i —ia [ Aif S Y (A _b - L
Ep_Fe ﬁ[e (e —e )+e (e —e )} 24 b ) __1T_' K
| | N 2 a—

E, = Ev giteo-an .L[(e'“ +e"“)(e'ﬁ —e'/})} 2 {

I 218
Using Euler's equation: { a
Ep :iei(kro—a)t) LI:(Z coS CZ)(2| sin ﬁ):l — iei(kl’o—a)t) 2bsin IB oS & _ . -1y

o 218 I B e
E, = E,e““ ) where E, = E_20SINS s 4 17

r0
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The irradiance at point P is:

2, . 2 . 2 2
I:(iCjEjz(gocj 20,1 (SN o2 o | =4I, SN 1 cos? | where IO:EEOCJ 20E,
2 2 I p p 2 I




Double-slit diffraction i

With the modified interference pattern for double-slit due to diffraction of each slit we have:

| =41,cos’ () (Si;ﬂj Whereloz(g;CJ(ZbEL]

o

~
Interference pattern

of the double-slit  piffraction pattern
of a single slit

kasind masind
where o = =

and g =kbsinéd

Now I . =41, which is expected for the coherent sources.

In figure below a=6b and a=64 thus the cosa varies much more rapidly than sinc’ 8
We say the interference pattern of the doublle slit is modulated by the single slit diffraction pattern.

s sin? B
,B:

=
COs™ o

\
\{
iy ¢L+ in

0 27 47 6w 8w 107127 « 0 6 127
T 2w B

(a) (b)
© 2007 Pearson Prentice Hall, Inc.
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Diffraction from many slits |
Diffraction pattern of a plane wavefront that is obstructed everywhere but att the two slits

shown in fig. We follow our analysis for the single slit. The diffraction pattern for two slits
IS going to be superposition of the patterns by each slit. Therefore we write:

N/2 E e [[H(2i-Dasb]iz E [(2i-Dasb]iz
EP = Z I dEPi :_Lel(kro—a)t)z j eIkSSIn9d3+_Lel(kr0—a)t) J‘ elkssmgds

1=L slit(j) o 1=1 | [+(2j-1)a-b]/2 o [(2j-1)a-b]/2

Vo

K
Here we are considering the pairs of slits that are symmetrical with respect to the center of the grating.

J =1, double slit, j =2, 4slits, etc. With 8 =(1/2)kbsing and « =(1/2)kasiné

K = EOL |(|<r0 ot) Z:Jﬁ |:eia (eiﬁ _eiﬁ)+ e (eiﬂ _elf )}

K = -2 (2isin §)(2c0s(2] ~1)ar) = 2b ';ﬂ o[t

21

S = NZ/Z“stm’BRe[ 2"1)} 2bSi;ﬂRe[ei“+e‘3"‘+e‘5“+...+ei(N'l)“}

g
Geometric series

. . r"—1
For a geometric series a+ar +ar’ +....+ar" =a J

sin g

first tem a = e and ratio r =e?* then S = 2b




Diffraction from many slits Il
Continued fromlast page:

eiNOt _1
eia . e—ia

(eZia)N/2_1
cosNa+isinNa—1 —sinNa+i(cosNa -1)

2ia

e

e2i0: _1

2isina —2sina
i —sinNa +i(cosNa -1 ' i
s _opSinB oy a ( a-1) _)Szbsm,b’sw_lNa
p —2sina B Sina
. : . 2, . 2
. _EL ity JSINA S|r.1Na and |1 = 1. sin S (sw-lNaj
I p  sSina p Sinx
\ ) %K_J
Diffraction bya Interference
single slit between N slits
With | 8 =(1/2)kbsin 8| and | =(1/2)kasin &
lim M = lim NcosNa =+N this resembles a series of
a—>mrx S“’]a a—>mrx COSa
%/—J

indeterminate

sharp maxima that we call principal maxima.

oc N2

cantered at values o =0, tx7,+27,+37

principal maxima

Between successive peaks there are N —2 secondary peaks.

4/30/2009 Fraunhofer Diffraction

Secondar
maxima

2

H———- N% =64

37

37
a a

Principal maxima

N
AN

\
\Limiting diffraction envelope
N

(b)

. . . . . . © 2007 Pearson Prentice Hall, Inc.
The full irradiance is product of the diffraction pattern and interference pattern.
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Formation of secondary maxima

4/30/2009 Fraunhofer Diffraction
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Collimated

1t Lens S

\ + f =60cm o
i / I r

> ,+__ o

60 cm , S



Collimated

beam :
Shit
! b

—ijl -N\- £5.625 cm

<«—— 2 m
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Objective plane
lens

Y

Y

Star

light

* b Diffraction

pattern

Y

56 ft

A
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Ay
Aperture Lens
A =546 nm f=1m
0.2 mm
Collimated _ B I
beam ~
f
_ >
0
1 my \
-« 1m >

Screen
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