ME 297 L8 Mirror matrices Matrix formalism to model reflection from the plane mirrors

Nayer Eradat

Fall 2011

Ref. Dr. Jim Burge's Notes

SJSU

Vector form of the law of reflection

$$\hat{k}_2 = \hat{k}_1 - 2(\hat{k}_1 \bullet \hat{n})\hat{n}$$

The hats indicate unit vectors

k₁ = incident ray

k₂ = reflected ray

n = surface normal

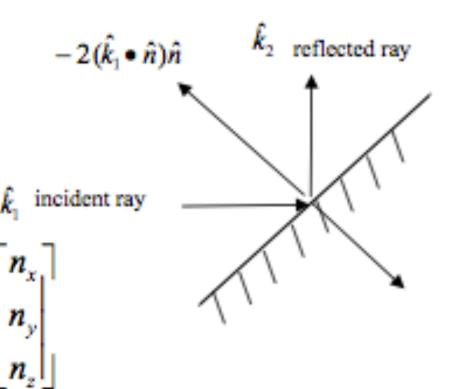
$$\hat{n} = n_x \hat{i} + n_y \hat{j} + n_z \hat{k}$$

Matrix form of the law of reflection

$$k_2 = M k_1$$

And the mirror matrix becomes:

$$M = I - 2n \cdot n^T$$



Matrix form of the law of reflection

 $k_2 = M k_1$ where $M = I - 2n \cdot n^T$ Expanding M we get:

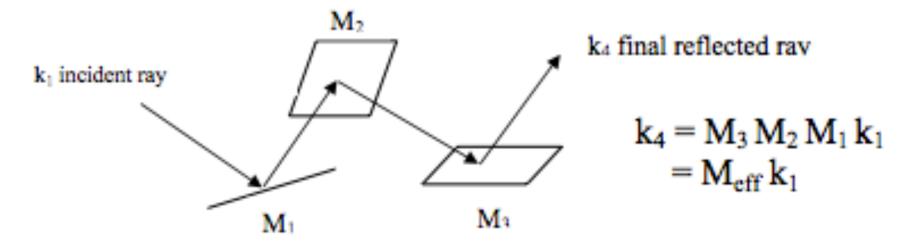
$$\mathbf{M} := \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} - 2 \cdot \begin{bmatrix} \mathbf{n} & \mathbf{x} \\ \mathbf{n} & \mathbf{y} \\ \mathbf{n} & \mathbf{z} \end{bmatrix} \cdot \begin{pmatrix} \mathbf{n} & \mathbf{n} & \mathbf{p} & \mathbf{n} & \mathbf{z} \end{pmatrix}$$

After calculating this mirror matrix, any vector k1 gets changed by reflection from the mirror to a new vector k2, calculated by simple matrix multiplication

$$M := \begin{bmatrix} 1 - 2 \cdot \mathbf{n}_{x}^{2} & -2 \cdot \mathbf{n}_{x} \cdot \mathbf{n}_{y} & -2 \cdot \mathbf{n}_{x} \cdot \mathbf{n}_{z} \\ -2 \cdot \mathbf{n}_{x} \cdot \mathbf{n}_{y} & 1 - 2 \cdot \mathbf{n}_{y}^{2} & -2 \cdot \mathbf{n}_{y} \cdot \mathbf{n}_{z} \\ -2 \cdot \mathbf{n}_{x} \cdot \mathbf{n}_{z} & -2 \cdot \mathbf{n}_{y} \cdot \mathbf{n}_{z} & 1 - 2 \cdot \mathbf{n}_{z}^{2} \end{bmatrix}$$

A series of reflections

- A series of reflections is modeled by successive mirror matrix multiplications.
- Effect of any set of mirrors can be reduced to a single 3x3 matrix multiplication.
- If light bounces off mirror 1, then 2 then 3, the net effect of these three reflections is



Example: find the reflected coordinates by a mirror with its normal in +z direction

For this mirror
$$n = 0\hat{i} + 0\hat{j} + 1\hat{k}$$
and M is: M=
$$\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{bmatrix}$$

$$M := \begin{bmatrix}
1 - 2 \cdot n_{x}^{2} & -2 \cdot n_{x} \cdot n_{y} & -2 \cdot n_{x} \cdot n_{z} \\
-2 \cdot n_{x} \cdot n_{y} & 1 - 2 \cdot n_{y}^{2} & -2 \cdot n_{y} \cdot n_{z} \\
-2 \cdot n_{x} \cdot n_{z} & -2 \cdot n_{y} \cdot n_{z} & 1 - 2 \cdot n_{z}^{2}
\end{bmatrix}$$

And a set of coordinates will be reflected as

$$x' = Mx = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix},$$

$$y' = My = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \quad z' = Mz = \begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix}$$

An incident ray traveling in the +z direction will be reflected to travel in the -z direction. Images of the x and y axes do not change.

Parity

- The determinant of the mirror matrix gives the parity of the system.
- An even number of reflections will cause the image to be right-handed, or to have parity = det(M) = 1.
- A system with an odd number of reflections will cause the image to be left-handed, or to have parity = det(M) = -1.
- Parity of one mirror is odd (-1).
- The image of a right handed coordinate system will appear to be left-handed in the reflection.
- This means that clockwise rotation about any basis vector will appear counter-clockwise in the image.

Rotating a mirror

 Mirrors with any orientation can be defined using rotations. The effect of rotating a mirror M, or system of mirrors that has equivalent matrix M is

$$M_r = R \cdot M \cdot R^T$$

where M_r is the new matrix and R is the rotation matrix given below

Example: rotation of a mirror about x axis with its normal in +z direction

Rotation about x-axis by α : the mirror matrix is

$$M_r = R_x(\alpha) M_z R_x(\alpha)^T$$

Using the identity: $[AB]^T = B^T A^T$ we have:

$$M_r = R_x(\alpha) M_z R_x(\alpha)^T = R_x(\alpha) \left[R_x(\alpha) M_z^T \right]^T$$

For this special case: $M_z^T = M_z \& [R_x(\alpha)M_z] = [R_x(\alpha)M_z]^T$

$$M_r = R_x(\alpha) \left[R_x(\alpha) M_z^T \right]^T = R_x(\alpha) R_x(\alpha) M_z = R_x(2\alpha) M_z$$

So effect of α -rotation around x is 2α – rotation on the reflected beam.

Likewise effect of β -rotation around y is 2β -rotation on the reflected beam.

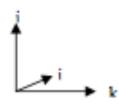
Exercise

Show that effect of γ -rotation around the z-axis on a mirror matrix wih its normal on the +z direction is:

$$M_r = R_z(\gamma) M_z R_z^T(\gamma) = M_z$$

Some common types of mirrors I

Free space



x mirror

$$\begin{bmatrix}
 -1 & 0 & 0 \\
 0 & 1 & 0 \\
 0 & 0 & 1
 \end{bmatrix}$$

insensitive to x rotation 20 for y and z rotations

y mirror

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

insensitive to y rotation 20 for x and z rotations

z mirror

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

insensitive to z rotation 20 for x and y rotations

90° x roof

$$\begin{vmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{vmatrix}$$

insensitive to x rotation 20 for y and z rotations

Some common types of mirrors II

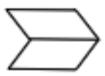
90° y roof

$$\begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

insensitive to y rotation 20 for x and z rotations

90° z roof

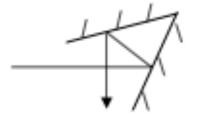
$$\begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$



insensitive to z rotation 20 for x and y rotations

45° x roof

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}$$



90° deviation insensitive to x rotation θ for y and z rotations

cube corner

$$\begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

retro-reflects insensitive to all rotations

How to find the mirror matrix for a prism or mirror system

- In most cases it is possible to find mirror matrix by inspection.
- Following the z, y, and z coordinates of a unit vector through the system using the bouncing pencil method and mark their changes as the vector reflects or travels in the system.
- We only need to trace two axes through and use the parity to get the third.
- Reverse the direction of rotation if the system has -1 parity
- Each reflection changes parity of the system by -1.

Effect of small rotations of any prism

Apply the rotation transformations to the prism matrix Mp

$$M_r = R_x(\alpha) M_P R_x^T(\alpha)$$

This matrix defines the new line of sight and any image rotation.

For small angles (jitter) we use the small angle approximation.

$$\sin \alpha \approx \alpha$$

$$\cos\alpha \approx 1$$

Effect of small rotations of any prism Some hints on rotation of prisms:

for nearly all cases, prism rotation θ about the x,y,or z axis does one of three things:

- 1. causes image rotation about same axis by an amount 2θ
- 2. has no effect on image about any axes
- 3. causes image to rotate anamount $\pm \theta$ aout the other two axes.