ME 297 L6 Line of sight RSS combination

Nayer Eradat

Fall 2011

Ref. Dr. Jim Burge's Notes

SJSU

LOS optical systems

- Combining multiple contributions to system LOS
 - Independent sources
 - Coupled sources
- Example problems
- General relationship between element motion and system LOS

Combining multiple independent sources of error

- Many things that can go wrong that will affect system performance. To calculate the combined effect if:
 - Roots of cause independent combine the effects as a Root Sum Square (RSS). Good to know
 - The answer is dominated by the biggest contributors
 - The smallest contributors are negligible
 - For N equal contributions, the RSS is equal to square root of N times an individual contribution.

RSS example

10 μrad pointing from element 1 15 μrad pointing from element 2 5 μrad pointing from element 3

Combined effect:

$$\sqrt{10^2 + 15^2 + 5^2}$$

$$= \sqrt{100 + 225 + 25}$$

$$= \sqrt{350}$$

$$= 18.7$$

RSS is dominated by the largest contributors

Example:

Compute RSS of 10, 1, 2, 1, 1

```
= sqrt(100+1+4+1+1)
```

=10.3 (not much different from 10)

Small contributors do not affect RSS

```
Compute RSS of 10, 11, 10
= sqrt(100+121+100)
= 17.9

Now add another term of 2
rss = sqrt(100+121+100 + 4)
= 18.0

Not much different from 17.9
```

For terms with equal contribution

Compute RSS for N equal contributions of x:

$$RSS = \sqrt{x^2 + x^2 + x^2 + x^2 + \dots(N \text{ times})}$$
$$= \sqrt{N(x^2)}$$
$$= \sqrt{N \cdot x}$$

Few rules for compound systems

- With many independent degrees of freedom the optimal distribution of error may be equal contributions from each DOF.
- System performance can be improved by reducing just the dominant sources of error
- Small contributors can be relaxed to reduce the cost without changing the performance.
- When the performance is good enough, cost of improving in not justified so relax.
- Maximize use of COTS (commercial off the shelf) parts for cost reduction.

Combining errors when the effects are coupled

- If one root cause results in many changes in the system, then the errors are coupled. For example temperature change causes all the parts expand or contract.
- In these cases the root cause is treated as a degree of freedom (DOF)
- The combined effect for the whole system when the DOF changes is calculated.
- this is done by calculating each contribution and summing them up keeping the sign.

Example Problem: Image stability

 Consider a simple two-channel fiber coupler shown on next page. The incident beams are 3 mm in diameter, and come to focus on the end of the fiber with 0.1 NA. The back focal distance, as shown from the focusing lens (which is a multielement lens) to the fiber is 8 mm. Coupling efficiency requires the position and rotation of the optics to be maintained so that both focused spots (one from beam 1 and the other from beam 2) are maintained on the fiber to ±0.3 µm

Example Problem: Image stability

Example Problem: Image stability

- a) Determine the focal length of the lens and find its nodal point.

 Calculate the following sources of error, consider the effects for both inputs 1 and 2
- b) Lateral translation of beam splitter cube 20 μm
- c) Rotation of the beam splitter cube about point A of 3 μrad
- d) Lateral translation of the focusing lens of 0.1 μm
- e) Rotation of focusing lens about point B of 20 μrad (decompose motion into rotation about nodal point + translation of nodal point.)
- f) Lateral translation of the fiber of $0.1 \mu m$
- g) Calculate the combined effect of all of the above and summarize in a table like the one shown
- h) How does this compare to the requirement?

Motion	Beam 1	Beam 2	Combined for 2 beams
b)			
c)			
Combined effect			

What happens when an optical element moves

To see image motion, follow the central ray

Generally, it changes in position and angle

Element motion

s: decenter

 α : tilt

Central ray deviation

 Δy : lateral shift

 $\Delta\theta$: change in angle

General expression for image motion

$$\varepsilon = F_n D_i \Delta \theta_i - \frac{NA_i}{NA} \Delta y_i$$

 F_n final working f-number = $\frac{1}{2NA}$ D_i beam footprint for on-axis bundle $\Delta\theta_i$ = change in central ray angle due to motion of element i

General relationship for tilt due to element motion and image shift

$$\varepsilon = \frac{D_i}{2NA} \Delta \theta_i = D_i \cdot F_n \cdot \Delta \theta_i$$

ε shift in image position

 $\Delta\theta_i$ change in ray angle at element i

D_i beam diameter at element i (looking at rays from on-axis point)

NA system numerical aperture (defined at image)

 F_n system focal ratio (defined at image)

J. H. Burge, "An easy way to relate optical element motion to system pointing stability," in *Current Developments in Lens Design and Optical Engineering VII, Proc. SPIE* **6288 (2006).**

How to find D_i

Use footprint diagram to get D_i , beam footprint on element i for onaxis case

Example for tilt of a mirror

Tilt α causes angular change in central ray

$$\Delta \theta_i = 2\alpha$$

Which causes image motion

$$\varepsilon = 2F_n D_i \cdot \alpha_i$$

"Lever arm" of $2 F_n D_i$ (obvious for case where mirror is the last element)

