Stress and Strain

ME 297 SJSU Fall 2011 Eradat

Normal stress and strain

- A normal stress σ , results when a member is subjected to an axial load applied through the centroid of the cross section.
- The average normal stress in the member is obtained by dividing the magnitude of the resultant internal force F by the cross sectional area A. Normal stress is

Tensile and compressive stress

- **NORMAL stress:** is the stress σ acting in a direction perpendicular to the cut surface.
- Normal stressed may be
 - tensile
 - compressive.
- Sign convention for normal stresses:
 - Tensile stresses are positive (+)
 - Compressive stresses are negative (-)
- Units of stress:
 - psi (or ksi or Msi)
 - Pa = N/m²
 - $mPa = N/mm^2$
 - 1 psi ~= 7000 Pa

Deformation of Axial Members

 For a prismatic bar of length L in tension by axial force F we define the stress:

$$\sigma = \frac{F}{A}$$

 Now, define strain ε as normalized elongation:

$$\varepsilon = \frac{\Delta L}{L}$$

Stress and strain for differential elements

$$\sigma = \frac{F}{A} = \frac{dF}{dA}$$

$$\varepsilon = \frac{\Delta L}{L} = \frac{\Delta l_i}{l_i}$$

$$L = \sum_{i} l_i$$

$$\Delta L = \sum_{i} \Delta L_i$$

For homogenous material and small deflections, stress is proportional to strain

$$\sigma = \varepsilon E$$

E = Young's modulus or modulus of elasticity

Then elongation is:
$$\varepsilon = \frac{\Delta L}{L} = \frac{\sigma}{E} = \frac{1}{E} \frac{F}{A} \rightarrow \Delta L = \frac{FL}{EA}$$

Deformation is proportional to the load and the length and inversely proportional to the cross sectional area and the elastic modulus of the material.

Modulus of elasticity

Young's Modulus =
$$\frac{Stress}{Strain} \rightarrow E = \frac{\sigma}{\varepsilon} = \frac{F/A}{\Delta L/L}$$

Modulus of elasticity has unit of pressure Pascal (SI) or psi (engineering)

 $1psi = 1 \text{ lb/in}^2 = 6 894.75729 \text{ pascals}$

E ~ 10,000,000 psi (10 Msi ~ 70 GPa) for aluminum

 $E \sim 10,000,000$ psi (10 Msi ~ 70 GPa) for glass

E ~ 30,000,000 psi (30 Msi ~200 GPa) for steel

Example

L = 10"
$$A = 1 \text{ in}^2$$

W = 100 lbs
E = 10,000,000 psi (aluminum)

$$\Delta L = \frac{(100lb)(10")}{(10Msi)(1in^2)} = 100\mu in = 0.0001"$$

$$\Delta L \cong \frac{(450N)(250mm)}{(70GPa)(625mm^2)} \cong 2.5\mu m$$

Axial rigidity, Stiffness, Compliance

Axial rigidity = EA

A bar under tension is analogous to an axially loaded spring: $F = K\delta$,

K is the spring stiffness

 δ is the string elongation under the force F.

The above equation can be expressed as follows:

$$F = \frac{AE}{L}\Delta L = K\Delta L \to K = \frac{F}{\Delta L}$$

K, stiffness of an axially loaded bar, is the force required to produce a unit deflection.

C compliance is the deformation due to a unit load. Compliance of a

axially loaded bar is:
$$C = \frac{1}{K} = \frac{L}{AE}$$

Combining members: Parallel

$$\Delta L = \frac{F_1}{K_1} = \frac{F_2}{K_2}$$

$$F = F_1 + F_2$$

$$F = K_1 \Delta L + K_2 \Delta L$$

$$F = (K_1 + K_2) \Delta L$$

$$F = K_2 \Delta L$$

$$\boldsymbol{K}_{e} = \boldsymbol{K}_{1} + \boldsymbol{K}_{2}$$

Adding in parallel adds stiffness

Combining members: series

$$\Delta L = \Delta L_1 + \Delta L_2$$

$$F = F_1 = F_2$$

$$\Delta L_1 = C_1 F$$

$$\Delta L_2 = C_2 F$$

$$\Delta L = C_1 F + C_2 F$$

$$= (C_1 + C_2) F$$

$$= C_e F$$

Adding in serial adds compliance

$$C_e = C_1 + C_2$$

Materials

Material: Low carbon steel

Performance of the material under stress

$$E = \frac{Stress}{Strain} = \frac{d\sigma}{d\varepsilon}$$
 for small loads and small deflections

 $\sigma_{\rm YS}$, Yield Strength: The maximum stress that can be applied without exceeding a specified value of permanent strain (typically 0.2% = .002 in/in).

 $\sigma_{\rm PEL}$, Precision elastic limit or micro - yield strength: The maximum stress that can be applied without exceeding a permanent strain of 1 ppm or 0.0001%

$\sigma_{_{\rm U}}$, Ultimate Strength :

The maximum stress the material can withstand (based on the original area).

Resistive properties of the material

- Resistive properties of materials relate the stresses to the strain.
- They can only be determined by experiment.
- Tensile test:
 - A load is applied along the longitudinal axis of a circular test specimen.
 - The applied load and the resulting elongation of the member are measured.
 - The process is repeated with increased load until the desired load levels are reached or the specimen breaks.
- Load-deformation data obtained from tensile and/or compressive tests do
 not give a direct indication of the material behavior, because they depend
 on the specimen geometry.
- Using the relationships we previously discussed, loads and deformations may be converted to stresses and strains.

Tensile testing

- A load is applied along the longitudinal axis of a circular test specimen.
- The applied load and the resulting elongation of the member are measured.
- 3. The process is repeated with increased load until the desired load levels are reached or the specimen breaks.

Strength of the material: stress which will cause the material to break

Material	Tensile strength	
	p.s.i.	MN/m ²
Metals		
STEELS		
Steel piano wire (very brittle)	450,000	3,100
High tensile engineering steel	225,000	1,550
Commercial mild steel	60,000	400
WROUGHTIRON		
Traditional	15,000-40,000	100-300
CASTIRON		
Traditional (very brittle)	10,000-20,000	70-140
Modern	20,000-40,000	140-300
OTHER METALS		
Aluminium: cast	10,000	70
wrought alloys	20,000-80,000	140-600
Copper	20,000	140
Brasses	18,000-60,000	120-400
Bronzes	15,000-80,000	100-600
Magnesium alloys	30,000-40,000	200-300
Titanium alloys	100,000-200,000	700-1,400

Strength of glass

Poisson's ratio

The ratio of lateral or transverse strain to the longitudinal strain.

Initial, unloaded state:
$$\begin{cases} L : \text{ lengt} \\ w : \text{ Width} \end{cases}$$

Deformed state after loading:
$$\begin{cases} L' = L + \Delta L \\ w' = w + \Delta w \end{cases}$$

Longitudinal strain:
$$\varepsilon_z = \frac{\Delta L}{L}$$

Transverse strain:
$$\varepsilon_x = \frac{\Delta w}{w}$$

Poisson's ratio:
$$v = -\frac{\mathcal{E}_x}{\mathcal{E}_z}$$

Poisson's ratio for some material

Poisson's ratio for most materials ranges from 0.25 to 0.35.

 $Cork \Rightarrow v \approx 0.0$

Steel $\Rightarrow v = 0.27 - 0.30$

Aluminum $\Rightarrow v = 0.33$

Rubber $\Rightarrow v \approx 0.5$ (limiting value for Poisson's ratio, volume is conserved)

Shear stress and strain

Shear force V is the force spread over area A

Shear stress:
$$\tau = \frac{V}{A}$$

For small elements:

Stress:
$$\sigma = \frac{dF}{dA}$$

Shear stress: $\tau = \frac{dV}{dA}$

Units same as stress: psi or Pa

$$1ksi \approx 7MPa = 7N / mm^2$$

Shear strain

Shear strain: $\gamma = \frac{\tau}{G}$ where $\tau = \frac{V}{A}$ is the shear stress

G is the shear modulus or modulus of rigidity

For linear, isotropic material:
$$G = \frac{E}{2(1+v)} \approx \frac{F/A}{2(\varepsilon_z + \varepsilon_x)}$$

Where $E = \frac{\sigma}{\varepsilon}$ is the Young's modulus, and $v = \frac{\varepsilon_x}{\varepsilon_z}$ is the Poisson's ratio.

Shear stiffness

V: the shear force

$$\delta x = \gamma h = \frac{\tau}{G} h = \frac{V/A}{G} h = \frac{Vh}{AG}$$

Effect of shear in the structure

 Shear will cause tension and compression stress in directions at 45⁰ to the direction of shear force.

Structures under shear

 Which structure is more rigid under the shear shown in the picture?

Shear and normal stress

Pure shear Principal stresses

- At every point in a stressed body there are at least three planes, called *principal planes*, with normal vectors, called *principal directions*, where the corresponding stress vector is perpendicular to the plane, i.e., parallel or in the same direction as the normal vector, and where there are no normal shear stresses.
- The three stresses normal to these principal planes are called principal stresses.
- Shear stress along the principal axis is zero

Transformation of normal and shear

For more general cases, use **Mohr's circle to transform coordinates and see transformation of normal and shear stress**

Shear strength

- Shear strength is a term used to describe the strength of a material or component against the type of yield or structural failure where the material or component fails in shear.
- A shear load is a force that tends to produce a sliding failure on a material along a plane that is parallel to the direction of the force.
- Here the screw may fail in shear.

Bulk modulus

Bulk modulus defines **compressibility** of the material

For an element under uniform hydrostatic pressure *P* (in all directions)

Change in volume per unit volume =
$$\frac{\Delta V}{V}$$

We can show for small changes

$$\Delta V = \frac{\Delta x}{x} + \frac{\Delta y}{y} + \frac{\Delta z}{z} = \varepsilon_x + \varepsilon_y + \varepsilon_z$$

Bulk modulus E_B is a material property, defined as

$$K = E_B \equiv \frac{-P}{\left(\frac{\Delta V}{V}\right)}$$
 Where P is the pressure

For isotropic materials:
$$E_B = \frac{E}{3(1-2v)}$$

Case study: soft rubber between two stiff plates

Constrained layer:

$$\Delta x \cong 0, \Delta y \cong 0, \Delta A \cong 0$$

$$\Delta V \cong A\Delta t = At \frac{\Delta t}{t} = V \frac{\Delta t}{t} \Rightarrow \frac{\Delta V}{V} = \frac{\Delta t}{t}$$

by definition of E_B

Force F, Area A (= a b)

$$P = -E_{B} \frac{\Delta V}{V} = \frac{F}{A} \Rightarrow -E_{B} \frac{\Delta t}{t} = \frac{F}{A}$$

$$\Delta t \cong \frac{F t}{E_B A}$$

$$E_{B} = \frac{E}{3(1-2v)}$$

for soft rubber, $v \sim 0.5$, E_B blows up

For RTV rubber, E ~ 300 psi and EB~100,000 psi

The constraint makes the rubber seem 300 times stiffer!