1.	radius	(2 points each, 2 points bonus for the graph) A hollow conducting sphere of radius 10 cm has a uniform charge distribution of -5nC/cm ² on it (draw a diagram). K=9.0E9N.m ² /C ²		
	a.	Calculate the amount of total charge on it.		
	b.	Calculate the electric field inside the sphere at 5cm from the What is the direction?	Q= ne center.	
	C.	Calculate the magnitude of the electric field outside the sp distance 20cm from the center. Show the direction.	E _{magnitude} = E _{direction} = here at a	
	d.	What is the direction and magnitude of the coulomb force -5nC located at 20cm from the center of the sphere?	E _{magnitude} = E _{direction} = on a charge	
	e.	Calculate the total electric flux around the sphere at 20cm center.	$\begin{array}{l} F_{magnitude} = \\ F_{direction} = \\ from \ the \end{array}$	