
Light Review

Wave motion
M ll tiMaxwell equations
Light as an electromagnetic wave
E d tEnergy and momentum
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O tiOptics

Study of light 
In wave optics or physical optics light is an p p y p g
electromagnetic wave.  Example phenomena: 
diffraction, interference,… 
In geometrical optics light is a ray. Example: 
refraction, reflection, …   
In quantum optics light is a particle. Example: 
absorption, emission, laser action, …
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WWave
A self sustaining energy-carrying disturbance ofA self sustaining energy carrying disturbance of 
a medium through which it propagates.

Longitudinal wave: the medium is displaced g p
in the direction of motion of the wave.
Transverse wave: the medium is displaced in 

di ti di l t th t f th tia direction perpendicular to that of the motion 
of the wave. 

When a wave propagates the disturbanceWhen a wave propagates, the disturbance 
advances, not the medium. That is why waves 
can propagate faster than the medium carrying 
th (L d d Vi i)

3

them (Leonardo da Vinci).
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Mathematical expression of a waveMathematical expression of a wave 
The most general form of a one-dimentional 

( , ) ( , )
g

wavefunction is   where  is a 
disturbance and is the shape of it

x t f x t
f
ψ ψ=

disturbance and  is the shape of it. 
If we choose a function of  (a shape) and let 

th h f

f
x

V ti i-  then we have a wavefux x Vt→ nction moving 
in  direction with speed of .x V+

( ) ( )

It is also common to express a wave as a function

f x x Vt xf −⎛ ⎞ ⎛ ⎞

4

( - ) ( )of :      x x Vt xt f x Vt F F t
V V V

⎛ ⎞ ⎛ ⎞− = = −⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠
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E iExercise  
1.1) Use MATLAB or equivalent software for plotting.

x+
1.1) Use MATLAB or equivalent software for plotting.
a) Make a bell-shaped wavefunction moving in  
diraction

2

-
( ) 3 /(10 1)

x
f

diraction. 
b) Make a wavefunction moving in  from the 
f ll i l 2( ) 3 /(10 1).f x x= +following pulse  
c) Plot bot -2, -1, 0, 1, 2, 3t s=h wavefunctions at       

2 2- - ( - )

2

( ) ( , )
3( , )

10( ) 1

Ans. a) Bell shape or the Gaussian function ,  

b) 

ax a x Vtf x e x t e

x t
x Vt

ψ

ψ

= =

=
+ +

5

10( ) 1x Vt+ +
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N tNote

One-dimensional (1D) wave: direction of 
propagation is a function of one space variable. 
Example: disturbance in a ropeExample: disturbance in a rope.  
Two-dimensional (2D) wave: direction of 
propagation is a function of two space variables.propagation is a function of two space variables. 
Example: ripples in a pond (circular). 
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W tiWave equation
Maxwell showed that light is a transverse wave with electric and 
magnetic fields varying in directions perpendicular to the direction ofmagnetic fields varying in directions perpendicular to the direction of 
propagation. It can be expressed by a second order differential 
equation. 
In 1D, the wave equation is:In 1D, the wave equation is: 

2 2

2 2 2

( , ) 1 ( , )x t x t
x V t

ψ ψ∂ ∂
=

∂ ∂
Ψ(x, t) is the wavefunction representing the disturbance as a function 
of   space and time. V is the speed of the disturbance.
This is a homogeneous equation means it does not contain ψ by 

x V t∂ ∂

s s a o oge eous equat o ea s t does ot co ta ψ by
itself; equivalent to lack of driving source.  
Un-damped means it does not contain a first order time derivative of 
ψ;  equivalent to lack of resistance.

7

It is a linear equation since all derivatives appear in first power. 
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ExerciseExercise 
2 2

( . ) ( )
( ) 1 ( )

x t f x Vt
x t x t

ψ

ψ ψ

=

∂ ∂

∓1.2) Show that  is a solution to the one-dimentional 

2 2 2

( , ) 1 ( , ) .x t x t
x V t

ψ ψ∂ ∂
=

∂ ∂
differential wave equation  What kind of 

differential equation is this? How many constants do we need to 
e ( , )

( , )

( )

x t
x t

ψ
ψ1

xpress  uniquely? Define the constants*.  
1.3) superposition priciple for linear diff. equations: If  and 

b th l ti f th diff ti l ti h

1

( , )
( , )

x t
a x t

ψ
ψ +

2  are both solutions of the differential wave equation, show 
that 

2

2
3-4( )

( , )
x t

b x t a bψ
+

 is also a solution where  and  are constants. 
-4( )

2( , )
x t

x t Aeψ
+

=1.4) Show that the expression  is a progressive 
wave that is solution of the wave equation. What is the velocity of 
this wave (magnitude and direction)?

8

this wave (magnitude and direction)? 
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AAnswers
x tψ1 2) take derivative of with respect to and twicex tψ1.2) take derivative of  with respect to  and  twice 

and insert into the differential equation. This is a linear 
second order differential equation Since the equationsecond order differential equation. Since the equation 
is second order we need two constants which are 
amplitude and frequency

1 2a bψ ψ+
amplitude and frequency.
1.3) Take derivative of the  and insert into 
the wave equation

3/ 2V =

the wave equation.
1.4) Need to show that the expression is a solution 
to the wave equation with in xnegative direction

9

3/ 2V = −to the wave equation with  in xnegative  direction.
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W i th di iWaves in three dimension  
The one-dimensional wave equation can be written in there-
dimensions if:
a)  all three space variables appear symmetrically 
b)  by interchanging the space variables the equation do not 
change (right or left-handedness of the system has to remain
th ) W ti i C t i di t

2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

1 ,
V t

ψ ψ ψ ψ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + = ∇ ≡ + +

∂ ∂ ∂ ∂ ∂ ∂ ∂
2

the same). Wave equation in Cartezian coordinates:

;  with 2 2 2 2 2 2 2 2x y z V t x y z∂ ∂ ∂ ∂ ∂ ∂ ∂
We have the concise form of the 3D wave equation:      

10

2

2 2

1
V t

ψψ ∂
∇ =

∂
2

Eradat sjsu s2010



H i IHarmonic waves I
A wave with sinusoidal profile is said to be harmonic.

( ,0) sinx A kxψ =  
A progressive wave function made of such a profile is then 

( , ) sin ( )
s

x t A k x Vt
k

ψ = ∓
Why we need  the propagation constant? Argument of a in
f i h b i l h i i id

[ ] 1/
k

k L=
function has to be unitless so the positive constant  provides 
that condition . 
Two conditons for having harmonic waves:

.λ

Two conditons for having harmonic waves:

The wavefuction has to repeat itself after a spatial period  
Th f ti h t t it lf ft t l i d
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The wa .τvefuction has to repeat itself after a temporal period  
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H i IIHarmonic waves II
x
V V

λτ = =Period: the number of units of time per one wave or 
V V

Vfν = =

Frequency: reciprocal of period or number of waves per unit time 

or

.

1 i 1

f

k

ν
λ

ψ

= =

≤ ≤

or 

Amplitude: the maximum value of the disturbance  
Si Ath lit d i l t1 sin 1kx− ≤ ≤Since ,

2 2

( ) sin( ) -

A

x t A kx t

ω πν ω π

ψ ω

= Δ =

= ∞∓

the amplitude is equal to 
Angular frequency:  (  radian is equal to one cycle)

A harmonic wavefunction ranges from to( , ) sin( ) -x t A kx tψ ω= ∞
+∞

∓A harmonic wavefunction,  ranges from  to 
 in space and time and it is a mathematical idealization for a truly 

monochromatic or single frequency wave. 

12

g q y

In reality we only have quasi-monochromatic waves.
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E iExercise
2 /k π λ=1.5) Show that for a harmonic wave  

/
( , ) sin( - ) 0, / 4,

V
x t A kx t t

τ λ
ψ ω τ

=
= =

1.6) Show that for a harmonic wave 
1.7) Sketch the wave  at   

/ 2, 3 / 4, .τ τ τ  Use MATLAB to plot the function at these times.
1.8) Verify that the harmonic wavefunction is a solution of 
th 1 di i l diff ti l ti

sin(Aψ

the 1-dimensional differential wave equation.
1.9) Prove that the following expressions are all alternatives 
for the harmonic wavefunction )kx tω∓sin(Aψ =for the harmonic wavefunction )

sin 2 ( ) sin 2 ( ) sin 2 ( );

kx t
x t xA A t A x t

V

ω

ψ π πν π κ ν
λ τ

= = =

∓

∓ ∓ ∓  

13

1/
V

V
λ τ

κ λ=Where  is velocity of the wave and  is the wavenumber.
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Ph fPhase of a wave 

0, 0.t x= =
Phase of a harmonic wave: the argument of the sin function. 
Initial phase: value of the phase at   

0φ =If  at this point then the function has zero initial phase.

sin(A kxψ = ∓For the wavefunction )tω  what is the phase 
and the initial phase?

sin( )?A kx tψ ω ε= +∓
What is the initial phase of the folowing wavefunction?

 

14Eradat sjsu s2010



Ph l it fPhase velocity of a wave
Constant-phase point: a point on a progressive wave with a 

( , ) sin( )x t A kx tψ ω ε= +∓
constant magnitude of the disturbance.

f f fPhase velocity of a wave is speed of the motion of a 

constant-phase point on a dist phase
xV ∂

=
∂

urbance     phase t φ∂

Phase velocity is speed of the motion of the disturbance.

E l l t l f th h l it f th b

kx tφ ω ε= +∓
Ex: calculate value of the phase velocity for the above wave.

Phase of a harmonic wave at time t: 

φ∂ ∂

15

For constant 0 0 phase
xk V

t t kφ

φ ωω∂ ∂
= → = → == ±

∂ ∂
∓phase:   
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E iExercise
3 6 8) f 3 6 8( , ) 10 sin (3 10 9 10 0.5)x t x tψ π= × + × +1.10) For the wavefunction  

in SI units find the following quantities:
a) speed b) wavelength c) frequency d) period e) amplitudea) speed, b) wavelength, c) frequency, d) period, e) amplitude, 
f) phase, g) initial phase, h) ph 10t =ase at  s,  i) phase velocity, 
j) compare the speed and the phase velocity. 
k) what is the direction of the motion of the wave. Does phse velocity 
indicate the direction of motion properly?
k) h t 0 0 / 4 / 2 3 / 4i it d f th t h ?k) what 0 0, / 4, / 2,3 / 4,

0 0, 0.5 ,
2

x t
t

τ τ τ τ
π

π π

= =
=

 is magnitude of the wave at  when ?
l) plot the profile of the wave at  with initial pahse equal to   

16

, 2 .π π 
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Complex numbers representationComplex numbers representation
More often wavefunctions are expressed in complex exponentials 
since complex exponentials can simplify the trigonometric expressions

1

| |

z x jy z x iy j= + = + = −

since complex exponentials can simplify the trigonometric expressions.

 or ; i or  and both x and y are real numbers.

2 2 yφ| |z x= 2 2 ; tan

i

yy
x

z Ae φ

φ

φ+ =

=

  

We can also write  
Imaginary

x+iy
cos sin

(cos sin )
cos sin

ie i
z A i
x A y A

φ φ φ
φ φ
φ φ

= +
= +
= =

Euler's formula: 
    where

and =
A
si

n
 φ

x+iy

2 2

1

cos sinx A y A

A x y

y

φ φ= =

= +

⎛ ⎞

     and       

 is the magnitude or amplitude
Realx=Acos φ

y= φ

17

1tan y
x

x iy

φ − ⎛ ⎞= ⎜ ⎟
⎝ ⎠

= −*

 is the phase

z  is the complex conjugate of z.

Argand diagram
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E iExercise
* 2 * *1) ; ) | | )Re( ) ( );a zz A b A zz c z z z= = = +1 11) Show that:

1 2 1( )
1 2 1 2 1 1

) ; ) | | , )Re( ) ( );
2

)cos )sin )
2 2

i i i i
i i

a zz A b A zz c z z z

e e e ed e f z z A A e z A e
i

φ φ φ φ
φ φ φφ φ

− −
+

= = = +

+ −
= = = =

1.11) Show that:     

;  ;     if   

2
2 2

2 2
)i i

i
z A e g Aeφ φψ= =and  ;     is unchanged if the phase is increased 

2 ; iπ ±or decreased by  h) multiplying a complex wavefunction by  is 
/ 2/ 2 );ii e ππ ±± ± =equivalent to shifting its phase by  (Hint: first show  

i) Show that if two harmonic waves (cosine) with same amplitude, 
d d f ( f d i th th b k d) ith

( , ) -2 sin siny t A ky tπ ψ ω=
speed, and frequency (one forward going the other backward) with 

 difference in phase overlap, the result is: 
Plot this result. Have you seen it before? Interprete your results.

18

Plot this result. Have you seen it before? Interprete your results. 
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H i l IHarmonic plane wave I
Plane waves are very important in optics. 
For the plane waves the wavefront is planar

0 0 0( , ,p x y

For the plane waves the wavefront is planar. 
All the points on a wavefront share a contant phase.
Write equation of a plane that is passing through   0 )z

z

k

0 0 0 0

p

kand is perpendicular to a given direction,  (direction of 
propagation). 
Consider an arbitrary point k

p(x,y,z)

p

0(r - r ) k = 0i

Consider an arbitrary point  
on the plane. We must have: 

 . 

y

r

r0

p0 (x0,y0,z0)

constnt=0k r = k ri iThus  
is equation of such a plane 
pe krpendicular to (2 7 Hecht)

19

x

pe krpendicular to  (2.7 Hecht). 
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H i l IIHarmonic plane wave II
constnt= =0k r k r ki i  is equation of a plane perpendicular to  

0.
) sin( )

p
Aψ =r k ri

and passing through 
(  is a function defined on a family of planes all 

.kperpendicular to  Phase of this function stays the sa
= =0k r k ri i

me as 
long as its value is constant 

)
)

ψ
ψ

r
r

On each of these planes (  is constant 
but from plane to plane (  varies sinusoidally. 
Th i ti i th

, ) sin( )t A tψ ω=r k ri ∓
The progressive wave equation is then:

(   or 
( ( )) ( ) i ( )i tA A iAωk r k k∓

20

ψ ( ( ), ) cos( ) sin( )i tt Ae A t iA tω ω ω= +k rr k r k r∓ i ∓ i ∓. =  
Amplitude of a plane wave stays constant as it propagates
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Value of the plane wavefunctionValue of the plane wavefunction 
along the propagation direction

Ψ(r,t)
+A λ.

0
.

-A

0

.
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H i h i lHarmonic spherical wave
By solving the differential spherical wave equation we can

( )( ) i ( ) ( ) ik r VtA At k Vt t ∓

By solving the differential spherical wave equation we can 
arrive at harmonic spherical wave function (2.9 on Hecht):

( )( , ) sin ( ); ( , ) ik r Vtr t k r Vt r t e
r r

ψ ψ= = ∓∓             

that represents cluster of concentric shperes at any instance.
( , )

,
r r t

A
ψOn each sphere  is constant so  is constant.

Here  the source strength is a constant.
A
r

 is amplitude and it varies inversly with the distance from 

the source to conserve the energy

22

the source to conserve the energy.
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W f tWavefront

Wavefront: a surface over which the phase of a wave is 
constant. 
For plane waves the wavefronts are planar surfaces forFor plane waves the wavefronts are planar surfaces for 
which k.r=constant. For spherical waves the wavefronts 
are concentric spheres centered at origin of the wave.
H th f ti i t tHomogeneous waves: the wavefunction is constant over 
the wavefront, i.e. amplitude is constant. 
Inhomogeneous waves: the wavefunction is not constant
over the wavefront.
Example of an inhomogeneous wave function? 
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E iExercise
( )( , , ) ik x y z Vtx y z Ae α β γψ + += ∓1.12) Show that  is a solution to the 3D

2 2

( )

/ , / , / 1)x y z

y

k k k k k k

ψ
α β γ

α β γ α β γ= = = + + =2

)
wave equation. Here , ,  are the direction cosines. 
(Hint:    And remember 

( , ) fr tψ =1.13) Show that ( - )r Vt is the solution to the 3D wave 

( - )

r

V f r Vt
equation which corresponds to a spherical disturbance centered 
at the origin and moving outward with speed of . Here  is ( )fg g
an arbitrary twice differentiable function (Hint: Laplasian is not the 
same in all coordinate systems).
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El t tiElectromagnetic waves
-  The harmonic wave equation can represent any type of q p y yp
disturbance with sinusoidal behavior.
-  Physical significance of the disturbance is different for different 
systems.
-  Maxwell showed that light is composed of electric and magnetic 
fields oscillating perpendicular to each other and propagating in 
the direction k, perpendicular to the plane of oscillations. 

For light waves the disturbance is the magnitude of varying-  For light waves the disturbance is the magnitude of varying 
electric or magnetic fields that are described with the following 
harmonic wavefunctions:

25

( . ) ( . ),i t i te eω ω− −= =k r k r
0 0E E B B

harmonic wavefunctions:
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El t i d ti fi ldElectric and magnetic fields
Electric fields are generated by electric charges and ect c e ds a e ge e ated by e ect c c a ges a d
time-verying magnetic fields.
Magnetic fields are generated by electric currents 

(charge in motion) and time-varying electric fields. 
This intedepe E Bndence of the  and  is a key point in 

q
description of the light. 
Lorentz force: an electric charge , moving with velocity 

v E Bof  in an area that contains both  and  fileds, feels 
forces due to exist

( )F E B
ance of both fields.

26

( )= ⋅ + ×F E v Bq
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B f M llBefore Maxwell
Faraday's induction law: a time-varying magnetic field will have an 

-

y y g g

electric field associated with it.    
C

dl d
t

∂
⋅ = ⋅

∂∫ ∫∫
A

BE s
G

v

0

1 ,
A

Gauss's law-electric:  when there are no 

sources or si
V

d dVρ
ε

⋅ =∫∫ ∫∫∫E sw
nks of the electric field within the region encompassed 

0,M A

g p
by a closed surface, the net flux through the surface equals to zero.

Gauss's law-magnetic:  there is no magnetic monopoledΦ = ⋅ =∫∫ B sw
Ampere's ,circuital law:   a time-varying 

field or charges in motion (electric current) will generate a field

C
dl d

t
μ ε ∂⎛ ⎞⋅ = + ⋅⎜ ⎟∂⎝ ⎠∫ ∫∫

A

EB J s

E B

G
v

27

-field or charges in motion (electric current) will generate a -fieldE B
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M ll ti i t l fMaxwell equations; integral form
Behavior of electric and magnetic fields in a medium with

,
,

ε μ
ρ J

Behavior of electric and magnetic fields in a medium with  
electric permitivity  and magnetic permeability , in 
presence of free charges , and current density  is explained 
by four integral equa

-
C

dl d
t

∂
⋅ = ⋅

∂∫ ∫∫
BE s

G
v

tions known as Maxwell equations.  

   
C

C

t

dl d
t

ε
μ

∂

∂⎛ ⎞⋅ = + ⋅⎜ ⎟∂⎝ ⎠

∫ ∫∫

∫ ∫∫

A

A

B EJ s
G

v   

0d

d dVε ρ

⋅ =

⋅ =

∫∫
∫∫ ∫∫∫

B s

E s

w
w

A

A
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V
∫∫ ∫∫∫A
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Compact notation: good-looking, and 
cool equations
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Maxwell equations; differential formMaxwell equations; differential form

dl d∂ ∂
∇∫ ∫∫

B BE E
G

v -                
C

dl d
t t

dl dε μ ε

⋅ = ⋅ → ∇× = −
∂ ∂

∂ ∂⎛ ⎞ ⎛ ⎞⋅ = + ⋅ → ∇× = +⎜ ⎟ ⎜ ⎟

∫ ∫∫

∫ ∫∫

A

E s E

B E EJ s B J
G

v

v
0 0

A

     

                           

C
dl d

t t

d

ε μ ε
μ

+ → ∇× +⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

⋅ = → ∇ ⋅ =

∫ ∫∫

∫∫
A

J s B J

B s B

v

w

A
                

V

d dV ρε ρ
ε

⋅ = → ∇ ⋅ =∫∫ ∫∫∫E s Ew

∫ ∫∫
G

We used the following theorems: Stoke's  

Gauss's

C
dl d

d dV

⋅ = ∇× ⋅

⋅ = ∇ ⋅

∫ ∫∫

∫∫ ∫∫∫
A

E E s

B s B

G
v

w

30

A
                                                   Gauss s 

V

d dV∇∫∫ ∫∫∫B s Bw
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Constitutive relations

( ); ( ); ( )

= =
= = =

= = =

H B
E D J

D D E B H H E B J J E B

Magnetic field;  Magnetic induction;  
Electric field;  Electric displacement; Current density;  

Constituitive relations are: ( , ); ( , ); ( , )= = =D D E B H H E B J J E BConstituitive relations are:          
These relations may be nonliner or depend on the past (hysteresis). 
Linear response: the applied fields are small so they induce electric and 
magnetic polarizations proportional to the magnitude of the applied field 
(ferroelectric

1;E Bβ β β βε μ −= =∑ ∑D H
 and ferromagnetic material are exceptions)

1

;E Bα αβ β α αβ αβ
β β

αβ

ε μ

ε

μ −

∑ ∑D H   

 is electric permitivity or dielectric tensor 

is inverse magnetic permitivity tensorαβμ  is inverse magnetic permitivity tensor

For material isotropic in space both ε μ

ε μD E H B-1

and  are diagonal and all elements 

are equal then:    =   and    =

31

(1) (2)

,
....D E E Eα αβ β αβγ β γ

β β γ

ε ε= + +∑ ∑
At high enough fields every material is nonlinear (nonlinear optics)

      for most of opti 1μ =cal material 
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Electric fields in mediumElectric fields in medium
0ε χ=P P E1)  polarization vector:  electric dipole moment per unit volume.

0

- (

ε

ε
ε ε

= +

= =

D D E P

D PE E D E E

2)  displacement field:  electric field within the material 

3)  internal electric field:  and we have )  
0ε ε0

D E and  lines begin and end on free charges or polarization cahrges. 
In absence of free charge field lines close on temselves 

0).∇ ⋅ = ∇ ⋅ =E D
P E

(  
For homogeneous, linear, isotropic dielectrics  and  are i

(1 ) / 1+ Κ +D E

n the 

same direction so where and0 0, (1 ) / 1eε ε ε χ ε ε χ= = + Κ = = +D Esame direction so  where , and  
is the dielectric constant or function. 
4) Ohm's law: electric field intensity determines the flow of cahrge 

32

,σ=J E
) y g

in a conductor  true for conductors at constant temperature.
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Constitutive relations: magneticConstitutive relations: magnetic 
fields in a medium

1
m

μ −

= ΚM M H

H H B M

1)  magnetic polarization vector: . 
2) magnetic field intensity: ,μ= −0H H B M2)  magnetic field intensity:  

For homogeneous, linear (nonferromagnetic), isotropic 

1 (μ μ μ−= =

B H

H B 0

medium  and  are parallel and proportional, 

 and 1 )m
μμ+ Κ =rand (μ μ μ0

0

)m μ
μr
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Maxwell equations using theMaxwell equations using the 
constitutive relations

          ∂ ∂
∇× = − → ∇× = −

∂ ∂
B BE E
t t

ρ ρ

∂ ∂

∇ ⋅ = → ∇ ⋅ =E D               ρ
ε

μ ε

∇ → ∇

∂ ∂⎛ ⎞∇× = + → ∇× = +⎜ ⎟

E D

E DB J H J

0 0                  
t t

μ ε∇× = + → ∇× = +⎜ ⎟∂ ∂⎝ ⎠
∇ ⋅ = → ∇ ⋅ =

B J H J

B B
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The wave equation for the E and M q
components of the EM waves 

0 0 0 0

0, 0)

, , (1) , 2)

Maxwell equations in nonconducting  (   vacuum 

                  (   
t t

ρ

ε ε μ μ μ ε

= =
∂ ∂

= = ∇× = − ∇× =
∂ ∂

J
B EE B

(3) 0, (4) 0                                                

Take curl of (1) and us

t t∂ ∂
∇ ⋅ = ∇ ⋅ =B E

, ( ),e (2) to eliminate  ∂
∇×∇× = − ∇×B E Ba e cu o ( ) a d us

2 2
2

0 0 0 02 2

, ( ),

, ( )

e ( ) to e ate

 , using (4) we get 

t

t t
μ ε μ ε

∇ ∇ ∇
∂

∂ ∂
∇×∇× = − ∇ ∇ ⋅ − ∇ = −

∂ ∂
E EE E E

2 2
2

0 0 2 2
0 0

1, | |2
1differential wave equation:  with

t t
μ ε

μ ε
∂ ∂

∇ = = =
∂ ∂

E EE V
V

35

2
2

0 0 2

1We can also show: 
t

μ ε ∂
∇ = =

∂
BB

V

2

22 ,    
t

∂
∂

B
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E iExercise
1 14) a) Given a harmonic plane electromagnetic wave

0( , ) siny
xE x t E t
c

ω ε⎡ ⎤⎛ ⎞− = − +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
E

1.14) a) Given a harmonic plane electromagnetic wave 

whose field is:  
c⎝ ⎠⎣ ⎦

B E
B

determine the corresponding  field, direction of both  
and  fields. Make a sketch of the wave.
b) What is the direction of propagation of this wave?
c) Prove that for the above harmonic wave, direction of the 

x+propagation vector is along the  direction. 
Hint: propagation of an electromagnetic wave is along the 

36

×E B E Bcross product of  and  or . 
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E i RV1 14Exercise RV1-14
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Th l t ti tThe electromagnetic spectrum
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Th i d f f tiThe index of refraction
Velocity of light based on Maxwell's theoretical treatment in vacuum is 

0 0

1 1 .c V
ε μ εμ

= =

y g

 and in medium is 

0 0
e r

cn K
V

εμ μ
ε μ

= = =

E

Absolute index of refraction defined as: . 

The field of an EM wave polarizes the medium and theEThe  field of an EM wave polarizes th

0

,n V
ε ε

ε
= + =D E P E

e medium and the 
displacement field  changes. The result is change in 

 and consequently in  and  speed of light in the medium. ,
( ) ( )nε ω ω

q y p g
 and  are functions of the frequency of the EM wave

0 n K Kεμ μ≈ = =

s. 

Usually so ; is the complex dielectric function.

39

0
0

e en K Kμ μ
ε

Usually  so ;  is the complex dielectric function.
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Physical meaning of the index ofPhysical meaning of the index of 
refraction I

( )

' ".
i t

n
n n in= +

k

Consider a general case where  is a complex number 
 Consider the E component of a plane wave, 

( )
0

0

,i te ω⋅ −= k rE E k
k
 where  the propagation vector in medium

is complex.  is propagation vector in vacuum. 

0

V c nVω ω
= = =

k k
With , the phase velocity, and 

0

( ' ") " '( ) ( ) ( )( )
n n in n x n xi x t i x t i tk

nn
V c

ω ω ωω ω ω

ω ω

+
− − − −

→ = = =k k  for one-dimensional case

40

( ) ( ) ( )( )
0 0 0 0

i x t i x t i ti kx t c c c c
y y y yE E e E e E e E e e

ω ω ωω−= = = =
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Physical meaning of the index ofPhysical meaning of the index of 
refraction II

" '( )n x n xi tω ( )

0

"

is a real term and decays exponentially as wave propagates.

i t
c c

y

n x
c

E E e e

e

ω

ω

− −

−

=

'( )

 is a real term and decays exponentially as wave propagates.

 has a harmonic wave form and propagates without loss
This suggests that

n xi t
c

e

e
ω −

",
This suggests that 

 the imaginary part of n n
',

 is associated with absorption. 
 the real part of  is associated with propagation.n n,

"
' /

p p p g
In absence of , the case in many dielectrics in the visible part of
the EM spectrum,  is simply the ratio

n
n n c V= = of the speeds in 

41
' /

vacuum and in the medium. 
 is also called absolute index of refraction.  n n c V= =
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Frequency dependence of theFrequency dependence of the 
index of refraction

The wavelength dependence of n is 
stronger at short wavelengths or high 
frequencies.
For most dielectrics the imaginary 
part of the n is negligible in the visible
band

42

band
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E iExercise
1 15) Suppose a light wave propagates from point A to point B

( 1.50)n =
1.15) Suppose a light wave propagates from point A to point B. 
We introduce a glass plate  of thickness 1m into its path. 
a) How much phase of the wave will be altered at point B if 

0 500 ?nmλ =
) p p

 1.00.airn = Assume 
b) What is the phase velocity of the wave in the glass?
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Energy and momentum IEnergy and momentum I
Physical manifestation of electromagnetic waves is their enegy and 
momentum.

,u

∇

Energy density  is radiant energy per unit volume 

In order to calculate the energy content of the EM waves we start from 
( ) ( ) ( )∇ ∇E H H E E H∇ ( ) ( ) ( )

t t
σ

⋅ × = ⋅ ∇× − ⋅ ∇×
∂ ∂

∇× = − ∇× = + =
∂ ∂

E H H E E H
B DE H J J EUsing  and  and 

2

( ) ( ) ( ) . ( ) ( ) .

( ) 1 ( . ) 1
t t t t

H

σ

μ μ

∂ ∂ ∂ ∂
∇ ⋅ × = ⋅ − − ⋅ − = ⋅ − − ⋅ −

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ⎛ ⎞

⎜ ⎟

B D B DE H H E E J H E E E

B H H HH H 2

2

( ) ( )
2 2

( ) 1 ( . ) 1
2 2

H
t t t t

E
t t t t

μ μ μ

ε ε ε

⋅ = ⋅ = = ⎜ ⎟∂ ∂ ∂ ∂ ⎝ ⎠
∂ ∂ ∂ ∂ ⎛ ⎞⋅ = ⋅ = = ⎜∂ ∂ ∂ ∂ ⎝ ⎠

H H

D E E EE E ⎟

44

2 2t t t t∂ ∂ ∂ ∂ ⎝ ⎠

2 2 21 1( )
2 2

E H E
t

ε μ σ∂ ⎛ ⎞∇ ⋅ × = − + −⎜ ⎟∂ ⎝ ⎠
E H
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Energy and momentum IIEnergy and momentum II
2 2 21 1( )

2 2
E H E

t
ε μ σ∂ ⎛ ⎞∇ ⋅ × = − + −⎜ ⎟∂ ⎝ ⎠

E H

( )

Integrating both sides over a volume V, and applying the 

divergence theorem  dV ds∇ ⋅ × = × ⋅∫ ∫E H E Hv
2 2 21 1

2 2

V S

S V V

d E H dV E dV
t

ε μ σ∂ ⎛ ⎞× ⋅ = − + −⎜ ⎟∂ ⎝ ⎠∫ ∫ ∫E H sv
This is equal to power rat
S V V

e leaving the volume from its surface.
First two terms of RHS: time-rate of change of energy stored in 
electric and magnetic fields.
Third term of RHS: ohmic power dissipated in the volume as a 
result of conduction current density in presence ofσ E E

45

result of conduction current density  in presence of .
Thus the  is a vector representing power flow per unit volume.   

σ
×

E E
E H
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Poynting’s TheoremPoynting s Theorem
21 ( / )W m

μ
= = × = ×S P E H E B    is known as Poynting vector. 

μ
=S S

P S
power density crossing a surface whose normal is parallel to .

Poynting's theorem: surface integral of or over a closed

,S

P SPoynting s theorem: surface integral of  or  over a closed 

surface  equals the 

( )

V

d dV P dVδ
∫ ∫ ∫Sv

power leaving the enclosed volume .

h

2 * *

. ( )

1 1 1

e m
S V V

d u u dV P dV
t

u E

σδ

ε ε

− = + +

= = ⋅ = ⋅ =

∫ ∫ ∫S s

E E D D

v   where

Electric energy density

2 * *

2 2 2
1 1 1
2 2 2

e

e

u E

u H

ε ε
ε

μ μ
μ

= = ⋅ = ⋅ =

= = ⋅ = ⋅ =

E E D D

H H B B

Electric energy density

Magnetic energy density

46

2 *

2 2 2
P Eσ

μ
σ σ= = ⋅ =E E  Ohmic power density

Eradat sjsu s2010



E iExercise
1 16) a) Prove that for a harmonic plane electromagnetic wave

. .V c= =

E
E B E B

1.16) a) Prove that for a harmonic plane electromagnetic wave 
with the following  field component traveling through an insulating 
isotropic medium,  In vacuum 

0 )tω= ⋅ −E E k r
p ,
cos(  

b) Calculate the magnitude of the poynting vector  
c) Prove that the energy content of this plane wave, in unit volume,
due to electric and magnetic fields is equal. 
d) Calculate the total energy per unit volumed) Calculate the total energy per unit volume.
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I diIrradiance
IIrradiance , or the amount of light: average energy over unit area per unit 

,
I A

S
time.  is independent of detector area , and duration of measurement. 
Time averaged value of the Poynting vector  or ir

T

radiance is:  

2

2

1 ( )

Tt

T
Tt

I dt
T

+

−

≡ = ×∫S E H  

2

,T τ�Note that the averaging time  has to be much greater than the 
period.

EIrradince is proportional to the square of the amplitude of the  field. 
For linear, homo

c
geneous, isotropic dielectric 

48

2 2 2
0

0
T T T

cI V E I B c Eε ε
μ

= = =    In vacuum:      
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E iExercise
1.17) a) Calculate time average of the harmonic plane wave

( - )
0

2cos( - ) sin( - ) cos( - ) ,

i kx t

T T T

E E e T T

kx t kx t kx t

ω

ω ω ω

=  over a time of  (  is not temporal period of the wave). 

b) Calculate the , , 

2sin( - ) .

T T T

T
kx tω  U sinsin .xc x

x
=se the notation      

) U th lt f t d b t h th t f l

20
02T

cI Eε
≡ =S

c) Use the results of parts a and b to show that for plane waves 

in vacuum  
2

d) Calculate the optical flux density for the plane EM wave with 
the following electrical (also called optical) field moving in vacuum 

49

14 3
80, 100sin 8 10 ( : 13.3 / )

3 10x y z
xE E E t Ans W mπ⎡ ⎤⎛ ⎞= = = × −⎜ ⎟⎢ ⎥×⎝ ⎠⎣ ⎦

   .      
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E iExercise
601.18) A  watts monochromatic point source radiating equally 

-7 2 -2
0

2.0
4 10

m
Ns Cμ π= ×

) g y
in all directions in vacuum is being monitored at a distance of  . 
Using the the fact that  , determine the amplitude 

0 30 /E V m− =Eof the field at the detector. (Ans:  )
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