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Frequency Analysis of Optical Imaging
Systems

Frequency analysis and linear systems theory are relatively new to
optics but they have a very fundamental place in the theory of
imaging systems

Introduction of Fourier analysis to optical systems

— Earnest Abbe (1840-1905) and Loard Rayleigh (1842-1919) Laid
the foundations of the Fourier optics

— P. M.Duffieux in France in1930s published a book on Fourier
optics in 1946 translated to English “The Fourier transform and
its applications to optics” Wiley 1983

— Otto Schade in US in 1948 employed methods of linear system
theory in analysis and improvement of TV camera lenses.

— H.H. Hopkins in UK used transfer function methods for the
assessment of the quality of optical imaging systems

This chapter:
— Coherent imaging systems important in microscopy, holography
— Incoherent imaging systems wider applications everything else



6.1 Generalized treatment of optical

imaging systems

« Treatment of more general lens systems

 Treatment of

— Quasi-monochromatic systems
« Spatially coherent
« Spatially incoherent
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6.1.1 A generalized model

System: some positive and negative lenses with various distances between them

possibly thick.

Assumption: the system ultimately produces a real image in space.

If a system is producing virtual images, it can be converted to reals image by lens.
All imaging elements are lumped into a single “black box” (aggregate system).
The aggregate system is defined by its “terminal properties” at the planes

containing the entrance and exit pupils.

Sources of the diffraction effects within the system: entrance and exit pupils
(conjugate planes) that are images of the physically limiting apertures.

We assume the passage of light between the entrance and exit pupils is properly

described by geometrical optics

Diffraction affects = Geometrical optics
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Diffraction limited imaging systems

The following is true for a diffraction-limited imaging system:

Spherical wave of a point-source is converted by the system to a perfectly
spherical wave that converges towards the image point on a image plane.

Location of the image points on the entire image plane is related to the location
of the object points on the object plane by a single scaling factor.

Location of the image plane stays the same for all points on the image field of
interest.

Terminal property of a diffraction limited system: converting a diverging
spherical wave at the entrance pupil to a converging spherical wave at the exit
pupil.

A system can be diffraction limited only over a limited region of the object
plane.

Aberration: if the wavefront for a point source on the image plane at the exit pupil

departs significantly from an ideal spherical wave, then the system is said to have

aberration.
Aberrations lead to defects in the spatial-frequency response of the imaging
system.
a Ma #Ma #Ma
Object Imaged by a Imaged by a Imaged by a
diffraction system with system with

limited system aberration

aberration



6.1.2 Effects of diffraction on the image |

» For determining the source of diffraction in imaging systems two view
points are common:

— The finite entrance pupil seen from the object plane (Abbe 1873)
— The finite exit pupil seen from the image plane (Rayleigh 1893)
« Because the two pupils are conjugate of each other (image of each
other) the two view points are equivalent.
Abbe’s view point

Certain portions of diffracted = Un-intercepted components generated by
components (higher orders) high frequency components of the object
are interrupted by finite /amplitude transmittance.

entrance pupil. —

| »

Object: diffraction grating

Focal plane Image



6.1.2 Effects of diffraction on the image |l
Rayleigh’s viewpoint

Image amplitude superposition integral:

Uuv)=[[ h(uVi&n) Uo(&n)  dédn

v . . 0 .
Amplitude at image coordinates (u,V) Amplitude dlstrlbutlor]
in response to a point-source at (£,77) transmitted by the object

When there is no aberration h arises from a spherical wave converging
from the exit pupil towards the ideal image pointatu=M¢& and V =Mpy
The light amplitude about the ideal image point is the Fraunhofer diffraction

pattern of the exit pupil, centered on image coordinatesu=M¢& and V =Mp

2T (UM &)V -M7)

h(u,V;é,n)z;t—AZ‘_”:P(x, y)e ydxdy

1 inside the aperture _ _ _
P(x,y)= _ is the pupil function and
0 outside the aperture

Z. is the distance from the exit pupil to the image plane
X,y are the coordinates in the plane of exit pupil

The quadratic phase factors in the object and image planes are ignored. ,



6.1.2 Effects of diffraction on the image Il

To achieve space-invariance in the imaging operation, we need to remove
effects of magnification and inversion from the equation for h by the following
transformation:

E=ME, =My
oo £- )= [ peg)e
(u—f,V—n)_EII_wP(x, y)e xdy

|deal image: the geometrical optics prediction of the image for a perfect system

U, (uV) = h(u,V) ® U,(&7)

~— ~— \ /
Image by a impluse response or Fraunhofer image predicted by
diffraction-limited system diffraction pattern of the exit pupil  geometrical optics

- J— (ux-+Vy)

Where h(u,V) —” A dxdy



6.2.3 Polychromic illumination: the coherent
and incoherent cases (heuristic approach)

There is no perfectly monochromatic source in nature or in the lab.
The time variations of illumination amplitude and phase have statistical nature.

These fluctuations influence behavior of the imaging systems.
Monochromatic case: the amplitude and phase of the field presented by a complex phasor
that is function of the space coordinates (no time dependence).

Polychromatic narrowband case: the amplitude and phase of the field presented by a

complex time-varying phasor that is function of the space coordinates and time.

Only statistical techniques can produce a satisfactory explanation of the image produced

by such sources.
1) Spatially coherent sources: the phasor amplitudes of the field at all object points and

thus the various impulse responses on the image plane vary in unison or correlated fashion.

A coherent imaging system is linear in complex amplitude (U = ZUi — | =(2Ui)2)and the

monochromatic analysis holds. The U is a time-invariant phasor that depends on the relative
phases of the light. A coherent source can be obtained from lasers and some arc lamps.
2) Spatially incoherent sources: the phasor amplitudes of the field at all object points vary in

totally uncorrelated fashin. Obtained from diffused or extended sources.

An incoherent source is linear in intensity or power (I =Z l. =2Ui2).




6.2.3 Polychromic illumination: the coherent
and incoherent cases (rigorous approach)

The phasor representation is obtained by suppressing the positive frequency components
of the cosinosoidal field and doubling the negative frequency components.

Polychromatic wave represented by only negative-frequency components:
u_(P,t)=U(P,t)e "> where U (P,t) is the time-varying phasor representation of u(P,t)
Where v is the center frequency.

For a narrowband system, (Av << 17), the amplitude impulse response dose not

change dramatically for the various frequencies i.e. we can ignore the wavelength-

dependence of the spread of the Fraunhofer diff. pattern of a point source which is ok for
narrow-band signals. Now we can express the time-varying phasors representing the
image as convolution of a wavelength-independent impulse response with the

time-varying phasor representation of the object.

U (uvit) =[] p(u—f,V—ﬁ) Pg(gg,ﬁ;t—f} d&d7

Time varying phasor Wavelength-independent Time varying phasor representation
representation of the image impulse response of the object in reduced coordinates

S (u—E (V-
Where h(u—f,v —ﬁ):%”_w P(x,y)e alleehet n)y]dxdy and

U, (5,77): “\; |U°[I€I I\ZI] and r is the time delay for propagation from (fﬁ) to (u,V)

10



6.2.3 Polychromic illumination: the coherent and
incoherent cases (rigorous approach)

To calculate the image intensity we must time average the instantaneous

intensity represented by ‘Ui (u,V;t)‘Z, due to the fact that the detector integration
time (~ 50 ps) is extremely long compared to the reciprocal of the bandwidth
even for narrowband optical sources (A1 =1nm, 1/Af = A*/cAA =100 fs).

Therefore I, (u,V )= <‘Ui (u,V;t)‘2> the time average of instantaneous intensity.
t

L (uV) =[] d&d[[ d&dih(u-&V -7 )h (u-&.V -74,)
X<Ug(El’ﬁl;t_fl)ug(52’772;t_72)>t

For a fixed image point, h is non-zero only for small region about the ideal image
point. So (51,771) and (52,772) are very close to each other and the difference

between the time delays r, and z, is negligible under the naorrowband condition.
(V)= ][ 0G0n] [ a&dih(u=EV - )i (u-&V )

3, (&7 60,
Where J, (51,771;52,772):<Ug (fl,ﬁl;t)ug (Sz,ﬁz;t)>t is the "mutual intensity” and

it is @ measure of the spatial coherence of the light at the two object points.

11



6.2.3 Polychromic illumination: the coherent and
incoherent cases (rigorous approach)

For a perfectly coherent illumination, the time-varying phasor amplitudes across

the object plane vary only by a complex constant. So we can write:

Time varying phasor
amplitude at the or|g|n

0, (0.0:)

U, (0,0;t)
Ug (0, O;t)‘2>1/2

and U, (&,7,:t)= U, (&,.7,)

U, (&.it)= U (ea,nl) <U

%K—J
O’ ) Complex Constant <

Complex Constant

g
(
(51,771,52,772) (gl,nl)u ( )x1 the new "mutual intensity"

2

g

2
= U, (u,V) < Coherent case

Ii(u,V):‘”_Zh(u—f,V ~7)U, ( AdEdi

%/_/
Amplitude convolution equation

When the object illumination is perfectly incoherent, the phasor amplitudes acros

the object vary in statistically independent fashion. This property is represented by:

UG, Gt = & 1,(&7) 5(&-& i -7)

Real constnt

Intensity at point 1delta function vanishes as points 1 and 2 separate

For incoherent illumination the image intensity is found as a convolution of the

intensity impulse response \h\z with the ideal image intensity |

(uV) ij ‘h

12



6.2 Frequency response for diffraction-
limited coherent imaging

A coherent imaging system is linear in complex amplitude.
Therefore the intensity mapping will be nonlinear.
The frequency analysis should be applied to the linear amplitude mapping

13



6.2.1 The amplitude transfer function

Analysis of the coherent systems has yielded a space-invariant form of
amplitude mapping. The amplitude at the image plane are convolution of
the geometrical image amplitudes with a space-invariant impulse response.

=[[h(u=Ev =i, (&.7)asdg
F{U,(uV)}=F{h(uV)} F{u, (uVv)}
We will apply transfer-function concept to this picture.
Defining the frequency spectra of input and output and aplitude transfer function:

fY)znjOUg(u,V “iarhe W) qudy
= [ U (uv)e 2t gudy
=[] h(uv)e =" dudv

Applying the convolution theorem

G (fy, f)=H(fy, )G, (fy, 1)
This is effect of diffraction-limited imaging in the frequency domaine.

14



6.2.1 The amplitude transfer function and

physical characteristics of the system
=[] h(uv)e M dudy

Note H is defined as the Fourier transform of the amplitude point-spread
function.

We can aslo express H as the Fraunhofer diffraction pattern and is
Fourier transform of the pupil function (eq 6-5).

2
H(f,,f,) {/12 ” i dxdy}z Az P(-Az, f,, -2z, 1, )

If we set A1z, =1 and ignore the negative signs since for all of the interesting
applications pupil functions are symmetric in x and y.

H(fy. f,)=P(4z, 1,42 1,)

If the pupil function is unity within a region and zero elsewhere, then

there exists a finite frequency band for which the diffraction-limitted

imaging system passes all of the frequency components whithin that band

without distortion. This result is for an aberration-free system.

15



6.2.2 Examples of amplitude transfer functions

Frequency response of diffraction-limited coherent imaging systems:
1) A square with width of 2w

P(x,y)=rect (ﬁj rect (ﬁj

Using H (f,, f,)= P(/izi f.,Az fY) the amplitude transfer function is:

Az f _
H(f,,f,)=rect| —= feCt(@jzrect Ty rect i

The cutoff frequency is f, :%
Z

2) A circular aperture of radius w=/x* + y?

P (X, y):circ[w]

W

\/(/Izifx)2+(,12ifY)2 fy + 1, f2+ 1)
H(fy, f,)=circ =circ —X/I Y |=circ| X —"

w

The cutoff frequency is f, -

Az, o



6.3 Frequency response for diffraction-
limited incoherent imaging

The relationship between the pupil and amplitude transfer function in
coherent case: H (f,, f,)=P(4z,f, 4z, )
Goal: to find the releationship between the amplitude transfer function

and the system pupils for incoherent illumination. This may not be as
direct a relationship as that of the coherent case.

Systems: only diffraction-limitted.

17



6.3.1 The optical transfer function

Incoherent (illumination) imaging systems are linear in intensity and obey the:

Intensity convolution integral

r ~ 2 ~ ~ ~N
Ii(u,V)z K h(u—g,V—ﬂ) Ig(é,n) dédn
Constant ~ J
Intensity impulse response ldeal image intensity

We define the normalized frequency spectra of I, and I, as:

—00

J'J‘ 127z fyu+fyV dUdV
Gy (fx, fy) =
”_OO (u,V)dudv
Zero frequency value of the spectra I
—j2z(fyu+fyV d dV
gl( X! Y II -
” (u,V)dudv

Zero frequency value of the spectra l;

Maximum valule of the Furier transform of any real and nonnegative function

(Such as |, Ii) occures at the oringin. That maximum value is chosen as the

normalization constant. This constant is related to the background light and
contrast of the image.

18



6.3.1 The optical transfer function

We define the normalized transfer function of the system

" j Lo‘h (u V)| e 2" dudy
X Y

[I.n

Zero frequency value of the spectra h

Apply the convolution theorem to
o0 ~ 2 ~ ~
=«[[ |h(u=EV-7) 1,(&7)dédA
We get: G, (f,, f,)=H (1, f, )G, (T, )
Based on an international agreement:

dudV

H(f,,f,) is known as Optical Transfer Function (OTF) of the system.
‘H( fo, f, )‘ is known as Modulation Transfer Function (MTF) of the system
that specifies the complex weighting factor applied by the system to the

frequency component at (fx, f, ) relative to the weighting factor applied

to the zero-frequency component.
19



6.3.1 The optical transfer function

The relationship between the OTF and MTF through h

[’}
f ’ f — h Normalized N f {
H ( v ) F { } 7_(In(coherent j I_oo ‘h u, V dUdV

Coherent impulse
response

Using the Rayleigh's (Parseval's) theorem and autocorrelation theorem

J.J._oo‘h X y dxdy _”_OO‘H df df,
{‘hxy } JILH &—fy,m—1,)d&dn
7—((fx’f\():J‘J‘_OOH(pl’q.)l_l*(p'_ ke fY)dp'dq'

[{|H(p.a)f dpdg

With a change of variables: p=p'- f, /2,q=q"- f, /2 we get a symmetrical expression of:

Autocorrelation function of the amplitude transfer function of the coherent system

fj @+Q+fj*@—2ﬂ—g%mq

H(f fy)=
oTE jLJH p,q)zdpdq
system Normgﬁzation ’

This equation is the primary link between the coherent and incoherent

systems and it is valied for systems with and without aberrations.

20



6.3.2 General properties of the OTF |

Some simple and elegant properties of the OTF:
OTF is a normalized autocorrelation function.

SRSV S S
D gy ~ g |dpd
H (p+ g+ j (p o szq
[{"H(p.q) dpdg
1) H(0,0)=1 (For proof substitute f, =0, f, =0)

*

2) H(—fy,—f,)=H (f,f,) (For proof use "Fourier transform of a real

H(f,, f,)

function has Hermitian symmetry")
3) ‘H( f.,f, )‘ <H(0,0) (For proof use the Schwarz's inequality)
If X (p,q) and Y (p,q) are any two complex valued functions of (p,q), then

/] XYdeq\z < [ [|X[" dpdq] [|¥[* dpdq

The equality holds ony if Y = KX~ where K is a complex constant.

21



6.3.2 General properties of the O

Now IetX(p,q)=H(p+ fx ,q -+ szj and Y(p,q):H*(p_%’q_

2
Then we find

‘”ZH (p+f7x,q+f—2Y)H*(p—f7x,q—f—2depdq
2
s”: H(p+ f2x ,q+ szj dpdq”i‘H*(p—%,q—f—ij
=[] | (p.a)f apda]
G T ¥
J17 W (p.a) dpdd

‘H( f., f, )‘ <1 using the property (1) (0,0) =1 we get
Mt ) (00)

2

<1 therefore

Absolute intensity of the image background is never the sam as the absolute
intensity of the object background. The normalization has removed the information

about the absolute intensity levels.

F

f

Y

2

2
dpdq




6.3.3 The OTF of an aberration-free system |

Up to this point we have not made any assumptions about the aberration
of the system.
Now we consider the diffraction-llimitted incoherent system:

We have H (f,, f, )= P(ﬂ,zi f.,Az fY) for coherent systems

For an incoherent system, it follows from the equation for OTF with a
change of variables as: f, =1z f,, f, =1z,

”_w (x+ . v lzzf jp(x_ﬂzizfx,y /Izzf jdxdy
H x y dxdy

We used |P(x, y)‘2 =P(x,y) since P(x,y) is equal to zero or unity.

H(fy, )

23



6.3.3 The OTF of an aberration-free system ||

The numinator of the OTF of a diffraction-limitted incoherent
system represents the area of overlap of two displaced pupil functions:
1) One centered at (Az;f, /2, Az,f,/2)

2) Second centered at dimetrically opposite point (-4z f, /2,-4zf, /2)

The denuminator normalizes the area of overlap by the total area of the pupil.

area of overlap
Thus 7 fy. 1) = total area

Figure shows a geometrical optics interpretation of the OTF of a diffraction-
limitted incoherent system. This interpretation implies that OTF is always real
and nonnegaytive.

Y

P
. BN . Jzilfyl
: '\MI
Area over which
value of the both
— of the aperture

AzZi|fy| functions is one
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6.3.3 The OTF of an aberration-free system lll

/Iz f, Az 1, Az f, Az 1,
” ( y+2jP(x— 5 Y — > )dxdy

” xydxdy

Computational appraoch to calculation of the OTF of a complicated
diffraction-limitted system:

H(fy, 1)

1) Inverse Fourier transform the reflected pupil function P(—x,—y) or
Fourier transform the pupil function P(x, y), to find the amplitude
point-spread function.

2) Take the squared magnitude of the amplitude point-spread function
to find the Intensity point-spread function.

3) Take the Fourier transform of the Intensity point-spread function to
find the unnormalized OTF.

4) Normalize the OTF to unity at the origin.

25



6.3.3 The OTF of an aberration-free system |V

”_oo P(X+/12i2fx ’y+;tzi f, jP(X_;tzi f, ,y_/lzi ijdxdy
):

2 2 2
”_ZP(X, y) dxdy

Question: how a sinusoidal componet at a particular frequency pair (fx, fY) is generated?

H(fy, f,

Answere: one way is by interference of light in the image plane from two separate patches

on the exit pupil of the system with separation (4z | f, | Az | f, |).

There is more than one pair of patches that are separated by (1z | f, | Az | f, |).

Weight of each frequency component is determined by the number of ways the corresponding

separation can be fit into the pupil.
The number of ways a particular separation can be fit into the exit pupil is proportional to the

area of overlap of pupils separated by this spacing.

dsing=mAi
N tand =|y|/ z,
M =~Azm/d
Yo = Y =[] = 22,1
d o z Sep‘a:fatioln of the patches
< D=Zi " that light is coming from to W’

produce fringes of freq. |f,|

26



6.3.4 Examples of diffraction-limited OTFs

1) OTF of a system with square pupil of width 2w. We need to calculate

the area of overlap between two pupils separated by (1z|f,|,4z|f,|) centered at

(Az,fc12,22,f,12) and (-Azf, 12,4z, 12).

2W
2w—Az |, |)(2w— Az | f f f
A(fxva): (W iz" XD(W lz"Y‘) ‘ ‘</12 ‘ /12
0 otherwise
Normalizing this area with the total area of 4w* we get:
(2w— 2z |f,]) (2w—2z|f,|) < “ ‘<
H(f, fy)= 2w 2w /”Lz Az,
0 otherwise
1_f_>< 1_L T, ‘< ‘f ‘<
H(f,, fy)= 2f, 21, Az,
0 other\lee
Where fozﬂ
Az,
f f
fo, f)=A] =2 |A]| =
0= 5 a7
2w

Cutoff frequency: 2f, =
In this case OTF extends twice the cutoff frequency of the coherent
system. Compare Fig. 6.7 and 6.3

H A
. £/
f./2f,
y
Azj|f|
B 17zt
. B
—
Az)|fy]
—

Azl .



6.3.4 Examples of diffraction-limited OTFs

2) OTF of a system with circular pupil of diameter 2w. We need to calculate (a)
the area of overlap between two pupils centered at (1z; f, /2, 1z, /2).

It is not as simple as the square case. We know the OTF will be
circularly symmetric. So we calculate ‘H along the x axis and then
rotate that around the center of it.

The shaded area in (a) is four times the B area in (b). First get B

pvea(A+8) <[ (o) - {COSW;:X / ZW)}(EWZ)

2
Area(A) :1(—/12i fx j\/w2 —(/12‘ T J
2 2 2
] ;infX/ZW) ( Wz)—l
)T

cos™ (
H(1,.0)= 4[area(A+ﬂljv)—area(A)] _ { 27 . A

For general radial distance p in the frequency plane

( 2
2 4 p J P ( P ]
—| cOs — 1- p<2p, where p, =
H(p)={x [2;?0 2, \" \ 20 ° °

0 otherwise

N
N

: f,/2f,

In this case again OTF extends twice the cutoff frequency of the coherent

system. Compare Fig. 6.9 and 6.3 fu/2f, 28



6.4 Aberrations and their effects on
frequency response

For diffraction-limited systems we assumed that a point
source object yields at the exit pupil a perfect spherical
wavefront converging towards the ideal geometrical
Image point.

For systems with aberrations the exit pupil wavefront
departs from a perfect sphere.

We do not treat the aberration subject completely.

We will concentrate on general effects of aberration on
the frequency response of a system.

We will show these effects with a simple example.

29



6.4.1 The generalized pupil function |

For a diffraction limited system, amplitude point-spread function is

the Fraunhofer diffraction pattern of the exit pupil centered on the

ideal image point.

To include effects of the aberrations in this picture we assume:

1) the pupil is still illuminated by a perfect spherical wave

2) there is a phase mask in the aperture deforming the wavefront that
leaves the pupil.

3) kW (x, y) represents effect of the phase error at point (x, y) where

k=2z/4and W (x,y) is an effective path length error or

the aberration function .
4) The complex amplitude transmittanc of the imaginary phase shift

jkw(x,y)

plane is: P(x,y)=P(x,y)e

the complex function P(x,y) is the generalized pupil function.

30



6.4.1 The generalized pupil function |l

The generalized pupil function defined as: P(x,y)=P(X, y)ej"W(X*y)

Now with the above assumptions

a) The amplitude transmittance function of an aberrated coherent system is

the Fraunhofer diffraction pattern of the generalized pupil function P(x, y).

b) The intensity impulse response of an aberrated incoherent system is the
squared magnitude of the amplitude impulse response.

c) Aberration function is defined with respect to a Gaussian reference sphere.

d) Gaussian reference sphere is the ideal spherical surface centered at the

ideal image point and passing through the point where the

optical axis pierces the exit pupil.

e) The actual wavefront is also
defined to intercept the optical

axis in the exit pupil.

f) The error caused by aberration
function can be negative or positive.

Negative
W(xy)

\, Actual

W(x,y)

Positive W(x,y)

wavefront

Exit
pupil

Z,

Gaussian
reference
sphere

|deal

image

point
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6.4.2 Effects of aberrations on the amplitude

transfer function

For a diffraction-limited coherent system:

1) impulse response is Fourier transform of the pupil function.

ux+Vy)

=— j j A dxdy

2) The amplltude transfer function is the Fourier transform of the

amplitude impulse response H ( ” (u,V )e # Wduay

3) Therefore the amplitude transfer function was found to be proportional to
the scaled pupil function H ( f,, f, ) = P(4z,f,, 2z f,)

For diffraction limited coherent systems with aberration:

a) The generalized pupil function is: P(x, y) — (x y) o W (x.y)
b) The amplitude transfer function is written as:

) KW (Az; fy Az, )

H(f,, fY):P(ﬂ,zi f.,Az fY): P(x,y)e
c) The band-limitation of the H ( f, , f, ) that was imposed by the finite exit pupil

has not changed in presence of the aberrations.

d) Aberrations only introduce phase distortions within the passband.

32



6.4.3 Effects of aberrations on the OTF
(incoherent systems) |

OTF of an aberration-free incoherent diffraction-limited system:

”OO P(X+m,y+m)P(X—m y- A%k jdXdy
H(fx'fv): — : : 2 2
H (x,y)dxdy

We define the function A( f,, f, ) as the area of overlap of

P(XJF/IziZfX y /Izzf ja dP( Zzifx,y_/iziij

2 2
N

N oodxdy

then H( f,, f,)

Wavefront errors caused
by aberrations
/\

S T I R PYY
In presence of aberrations: H( f., fY): A(fx.fy)
.[-[A(0,0) X

Aberrations will never increase the MTF =|H( f,, f,)| or the modulus of the OTF.
33




6.4.3 Effects of aberrations on the OTF
(incoherent systems) ||

Important conclusions in presence of aberrations:

1)‘7—(( oty )‘With aberrations = ‘H( T by )‘2

implies that aberrations can never increase contrast of any spatial
frequency component of the image.

2) The absolute cutoff frequency of the system remains thae same
however, severe aberrations can reduce high frequency portions of
OTF to an extent that the effective cutoff is much lower than the
diffraction-limited cutoff.

3) For certian frequency bands OTF may have negative or even
complex value. when OTF is negative, the image components at that

2

Without aberrations

frequency can undergo a contrast reversal; i.e.
iIntensity peaks become intentity nulls and vice versa.
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6.4.4 Examples of a simple aberration: a
focusing error

Most aberrations are mathematically very challenging subjecst.
The simplest example is a focusing error for an square aperture system:

The center of curvature of a spherical wavefront converging towards image
of a point-source object is either to the left or right of the image plane.
For simplicity we assume this point is still on the optical axis.

Ideal phase distribution across the exit pupil: 4 (X, y)= —%(x2 +y?)

Actual phase distribution across the exit pupil: ¢, (x,y)= —%(XZ +y?)
z

a

where z, # Z,

The path length error or aberration function: KW (x,y)=¢, (x,y)—¢ (X, y)

W )= (i) i) oW =3 (22 ()
iza iZi Zi QuaMence

on the space variables
on the exit pupil

For a square aperture of width 2w the maximum path-length difference

at the edge of the aperture along the x ory axis is: W_ = —%(i—il W
Z, Z

a 1

X* +y°

W2

W (x,y)=W,
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6.4.4 Examples of a simple aberration: a
focusing error

2 2
Now substitute the path-length difference W (x, y)=W, X VJ\;zy in the OTF:
H(f,, f ”Aux,mej{ o dedy
( )= ” dxdy
A(0,0)
o e (2 |
e
H(f,, f,)= Al ) : see page 144 eq 6.31
. IA(0,0) dxdy

H(fx’fv):/\f—x/\isinc Wi | tx 1—M sinc W | Ty 1—m
2 f, 2 f, A\ 21, 2f, A\ 21, 2 f,

We plot this OTF for various values of W_/ A
W,, =0 gives the diffration-limited (no aberration) OTF.
For W_ > 1/2 sign of the OTF is reversed meaning a contrast reversal.
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OTF with focusing
error in a system with,

square aperture

M
.8

D E- Fd 1
frequency
0.4}
0.2




Focused and misfocused images of a
SpOke tar et Local contrast or MTF changes

as a result of change in

= R R T ,‘-d"'"—‘.

i .
T

T v wir

e -
1 ! '_.____.-.--'

¥ " o - T
i =

= == p—

Spatial frequency The position of the fringes is
increases moving (@) determined by the phase associated (b)
to center with OTF at each frequency 38




6.4.4 Examples of a simple aberration: a
focusing error

Consider the form of OTFwhen the focusing error is very sever W_>> 1/2
f f
H( fX , fY ) — A(f_XjA(L)S”] C{%(f_x)(l_ﬁj}mn C{%(Lj(l_u]}
2 f, 21, A | 21, 21, A\ 21, 21,
In this case value of ‘H is negligable over large frequencies and only it is nonzero for

small M SO m<<1 and 1—Mz1 and 1—mz1
0 2 0 2 0 2 0

A A ~ A e ~1 for M<<'|
21, 21, 2 f,
H(f,,f,)=sinc Wor [ F | linc| SV | f
A 21, A 21,
This is precisely the OTF predicted by the geometrical optics saying that the point-spread
function of the system is going to be the geometrical projection of the exit pupil into the

image plane.
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Geometrical optics prediction of the point-
spread function of a system with square
aperture and sever focusing error

|
)

Z;
Fourier t%ﬁnsform of such a PSF function gives the OTF of the system
in presence of severe aberrations, Fourier transform of the geometrical
PSF is a good approximation for the OTF of the system and diffraction
plays a negligible role is shape of the image
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6.4.5 Apodization and its effects on
Frequency response
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