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4.1 Background

* In chapter 3 we dealt with most general form of the diffraction
theory.

e In chapter 4 we will deal with
— Intensity of a wave field
— Huygens-Fresnel principle

— Certain approximations to reduce the problem to a simpler
mathematical form. These approximations are:

e Fresnel

* Fraunhofer
— We consider the wave propagation phenomenon as a system.
— The approximations will be valid for certain class of inputs.
— Preparation for the calculations related to the approximations
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4.1.1 The intensity of a wave field

Intensity is the physically measurable attribute of an optical wavefield
Intensity and power density are not the same but proportional
Intensity of a scalar monochromatic wave at point P

1(P)=lU(P)[

For a narrow-band (not perfectly monochromatic) intensity is given by

1(P)={(Ju(P,t) |>2 and 1(P,t)= |u(P,t)|°

o J/

An infinite Instantaneous
time average Intensity

In calculating a diffraction pattern, we are looking for the intensity of

the pattern.
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4.1.2 The Huygens-Fresnel principle in
rectangular coordinates

According to the first Rayleigh-Somefeld solution the diffracted field

on the xy plane due to the aperture on the &7 plane is U, (PO) and the

Huygens-Fresnel principle can be written as:

1 eij01 d h o 7
U, (Po)=.—/1ﬂzU(Pl) ; cos&ds where cosé =cos(n, f,) =—
J o1 3

ejk'bl

U(X,y)=j%ﬂzU(§ﬂ7) dédn,

2
r.01

where 1, = \/22 +(x=&)’ +(y-n)’
Two approximations are used in this result: - Py
1) inherent approximation in the scalar theory| [z 5 ¥

2) 1, >> A y “““ 0o
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4.2 The Fresnel approximation |

Goal: to reduce the H-F principle to a simple and usable expression

We achieve this by approximations for r, :

n(_)n22

Binomial expansion: (x+y)" = x" +nx""y + 1 V' +..+y,n=123,..

(1+ b)il/Z —

2 2 2 2
r, =1 1+(5j +(y_77j ~ 7 1+£(5j +l(uj +...
Z Z 2\ 2 2\ 2
Where do we cut the series? We will use r, in the diffracted field equation

U(xy) —JJU(§ =

bF=b*+... for —1<b<1: the higher order terms are negligable

[+
N |-

e Jkroy

dfdn

The term e’ is very sensitive to the values of r,, specially since it is multiplied
by a very large number k =27/ A. In the visible of the order 10’. We keep two
terms for the exponent. For r error introduced by dropping all terms but z is small.

{ 22[(x £ +(y-1) }}

eJ 01

U (xy) =5 [[uEn< dﬁdn——ITU(ﬁn)e ddy

The integration limit is Iet to oo using the usual boundary conditions.
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4.2 The Fresnel approximation |l

U(xy {J[(x oty |

d&dn this looks like a convolution

el { kz[(x—§)2+(3’—77)2}}

Mz

(%) fjtﬂfiﬁh0<<§y n)dédn where h(x, y) =

- /

First form of the Fresnel diffraction integral

Another form of the Fresnel diffraction integral is expressed as the following

.k

. e .
Fourier transform of the U (§,n)e122( v ) which is complex field
just to the right of aperture multiplied by a quadratic phase factor

fT{U(énﬁe”*g")}e’zgy"dfdn

Seond form of the Fresnel diffraction integral

Observation in the near field of the aperture or Fresnel diffraction region

Where r,, >> 4, x;§<1’ M<1,
Z Z

and scalar theory approximation are assumed

jkz

e
U xy)= jAz
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4.2.1 Positive vs. negative phases

Goal: to understand the meaning of the signs of the
phase exponentials:
in the spherical wave e and its equivalent

kK 2

: : L - (C+y?)
in the quadratic approximation gz (forz>0)
Sign convention: our phasors rotate in the clockwise

direction (the angle becomes more negative as time goes)

and their time dependence is e ™"

We move in space in such a way that we encounter
portions of the wavefield that were emitted earlier in time.
The phase must become more positive since the

phasor had not have time to rotate as far in clockwise.

We move in space in such a way that we encounter
portions of the wavefield that were emitted later in time.
The phasor will have advanced in the clockwise direction,
therefore the phase must become more negative.
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4.2.2 Accuracy of the Fresnel approximation |

Fresnel approximation replaced the spherical secondary wavelets with

parabolic wavefronts in the Huygens-Fresnel principle

(X y —'U U(g 77) ej o dédn_>__H.U(§ n)e{ 22[( -&)?+(y-n) ]}défdn
Smal arabolic wavelets

wavelets

The accuracy of this approximation depends on the size of the higher

order terms in binomial expansion. A sufficient condition for accuracy is:

[y ~ Z 1+1(X;§T+1(y_77j2+ 1{()(_5)2+(y_77j2}
2\ 12 2\ 1 8 Z Z

maximum phase change due to dropping
b2 /8 term must be much less than one radian

SR SR

Max
3 T { 2 2}
I >>—( X— + —
| 2 \x=e)y +y=n)y |
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4.2.2 Accuracy of the Fresnel approximation |l

Example: calculate the safe distance to use the Fresnel approximation

for a circular aperture of size 1cm and a circular observation ragion of
lcm with a light of 4 =0.5um. (Answere: z >> 25 cm)

2% >> %{(x—g)2 +(y—77)2};ax hint: x— & and y —n should have their

maximum possible values to evaluate the condition.
If the higher order terms do not change the value of the Fresnel integral

substantially, we can use the approximation.
They do not need to be small in this case.
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4.2.3 The Fresnel approximation and the
angular spectrum |

Goal: understand the implications of the Fresnel approximations from

the point of view of angular spectrum method of analysis.

We compare the transfer function of propagation through free space,

predicted by RS scalar diffraction theory, with the transfer function
predicted by the Fresnel analysis

[ General spatial phase dispersion
representing propagation
.

N

' .27 2 2
H f f =< (J\/l_(ﬁ‘fX) —(21y) J 2 2 < RS theOr
rs (T Ty) e\ 4 \/fx +f,°<1/4 y
0 otherwise
A constant adratic phase
phase delay gispersiorl?
" ) [ : 2] due to traveling f N \
jke i KTl _ —_— .
el {ixfocarsyntll ~ NEEPRENT
h(X,y): : e 22 )HF(fX’fY): eJZ e (X Y)
17 —— - ~ ~
J ) Allffplane Wﬁves Different plane-wave
— suffer equa
Fresnel approximation impulse response Ay ﬁﬁfnéfé’rﬂeﬁﬁzsg fg%rlays
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4.2.3 The Fresnel approximation and the
angular spectrum Il

272 (At P, )2
H. (f,,f,)= e[ ’ | Vi1 <14 RS theory

0 otherwise

- i 1,7+ %)

H.(f,, f,)=¢e"e
We can see that H_(f,, f,) is an approximation to the H.. (f,, f,)
Applying the binomial expansion to the H. . (f,, f,) we get:

2 2
JLI-(25, Y = (af,)? zl—(/”zX) —(’HZY) if (1f,) <land (2f,) <1

2 (A6 (A )

212 - /”x ~(A%,) [J D L i fu24 .2
( \/ j~e lL i i :ejkze Jl(fx fY):HF(fX1fY)

Conclusion:

2
Hes (fy, fy) = Ho (fy, f,) When the conditions: (4f, )2 =a’ :(IkTXIj <1

2
(/1fY )2 = B = [k—Y] <« 1 are satisfied. So Fresnel approxilation is equivalent

K]

ﬂ)e paraxial apprommatlop atlga%tplhvélllgsngem t§’ §mal| propagation angles.
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4.2.4 Fresnel diffraction between confocal

spherical surfaces |

Goal: analysis of diffraction between two confocal spherical surfaces
Confocal spheres: center of each lies on the surface of the other.

We set the spheres tangant to the plance we used before.

Located atz =0 and z = z. r,, is the distance between two spherical caps.
We write the equations for both surfaces and find the distance between
them. Make paraxial approximation by using the binomial expansion.
Assuming the extend of the spherical caps about the z axis is small
compared to the radii of the spheres, i.e. for z>>x- £ and y -7 , we get

X
N L

e Jkr01

U (xy) —H U(&m)=d&dn,

(X y {— —[x +yn]}d§d77 /

Field on the
right hand Fourier transform of the Field on the

Y

’

X

_ spherical cap left hand spherical cap
Sprina 2010 Eradat Physics Dept. SJSU
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4.2.4 Fresnel diffraction betweent & ‘
confocal spherical surfaces Il m
Comparing the two form: (1
(X y {‘ *[X ﬂm}dfdn \./
o z X

Compared with the Fresnel diffractionintegral:

K22
Fourier transform of the U (&,7)e 22( v ) which is complex field just
to the right of aperture multiplied by a quadratic phase factor

ejkz

I B (&) | -2 (eym)
Uxy)=-e" H{U@,me & }e dédy

Seond form of the Fresnel diffraction integral

We see that by replacing the two plates with spherical caps, the quadratic

2+2

: i—(C+y°) (&% :
factor in (x,y), gz ,and (&,n), e 22( 77) have been elminated.
In fact these two phase factors are paraxial representations of spherical
phase surfaces. By having a spherical observation plane, they are gone.

On derivation of the Fresnel diffraction integral we approximated the

spherical waves with plane waves. Now getting back to spherical surfaces,

there is no approximation. Sherical surface will see the spherical wave like

Sprina ZO%ﬂat surface sees the planeéN ?PhVSICS Dept. SJSU 13



4.3 The Fraunhofer approximation |

Goal: applying another more stringent approximation to the Fresnel
diffraction integral to simplify the calculations for valid cases.

k(2 2
Fourier transform of the quadratic phase function, U (§,n)e122(§ v ) which is the
k(2 2
aperture distribution U (&,77), multiplied by a quadratic phase factor eJ2Z(§ v )

el jk(x2+y2> r ic{eent) | —iZ5(xeym)
U(xy)=S—e [ [ug e’ e atemy ey,
MZ .
) Seond form of the Fregnel diffraction integral ’
| . k(&2 +77) |
Applying the Fraunhofer approximation: z > T2 the quadratic
J—(s"+n
phase factor e 2 )zl N 2 Y
elk J—(x2 —J* XE+yn) g
21
U(xy)= i j U me #  dédy Py
Mz .,
— | > yi
Fourler transform of the aperture distribution
y AL 6o
evaluated at fy _E and fy = iz
_ Spring’20
Eradat Physics Dept. SJSU
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4.3 The Fraunhofer approximation |l
(&)

ZA :
T2 or — > aperture size,
T

Fraunhofer approximation: z >

Fresnel approximation: z > \/(x -EV +(y-n)?

Since k :277[ Is a large number Fraunhofer approximation is much

stringent than Fresnel approximation
At optical frequencies: 4 =0.6um; aperture width =2.5 cm; z >1600m
A less stringent condition is called the "antenna designer formula*:

for an aperture with linear dimension of D, the Fraunhofer approximation

2
will be valid if z >

now z > 2000 meters (>> is replaced with >)

The Frauhofer diffraction pattern will form at very far distances but we
can bring the pattern by using a proper lens or proper ilumination.

Will see in the problems.
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Bessel functions |

The Bessel functions or cylinder functions or cylinderical harmonics

of the first kind, J, (x), are defined as the solutions to the
2

d-y dy 2 2
+X—+(X"=n%)y=0
dx?  dx ( )Y

These functions are nonsingular at the origin.

(o _1| . 1
Z 2I+|m|( ) X2 |lm ==
APZELITEY Y 2

Jm(x)<,/isinx m=1
X 2
| 2 1
—— COS X m=-=
|V 7X 2

J.(x)=(-D"J,(x) m=01 2, 3, ..

Bessel differential equation: x*

A derivative identity: i[xmam(x)] =x"J__,(X)
dx

An integral identity: jouu'JO(u Ndu'=uJ,(u)
Bessel function addition theorem: J (y+2) = Z:z_w J.(V)J,_.(2)

ZC::_OO J (X)=1; ézcoselﬁa\!@(ﬁf{]&&pjtﬁ‘%ﬂ@@cos(ng) Spring 2010

There are more of these identities. Check you favorite math handbook.
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Bessel functions of the first kind (MATLAB)

u=(0:0.1:15)
BJO=besselj(0,u);
BJ1=besselj(1,u);
BJ2=besselj(2,u);
BJ3=besselj(3,u)
plot(u,BJO,u,BJ1,u,BJ2,u,BJ3);
Iegend('.JO','J 1','\]2','\]3') | Bfessel functions of first kin‘d
title('Bessel functions of first kind");
xlabel('u’),ylabel('J")

grid on

-0.5
0
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Bessel functions I

Various integrals expressed in terms of the Bessel functions:

J.(2)= ij‘: cos(z sind—n@d)dd  Bessel's first integral
T

J.(2) = '—f” %% cos(nd)d @
72' 0

3,(2) = == ["e"%e™ 40 - with n=0
271" Jo

(z214)

(k)

. 1 2r iacos® . c k
Jo(a)—g'[O e?*’dg  or JO(Z)_Z(;(_l)

n

J (z)—gz—fﬂlzsinznucos(zcosu)du forn=12

"z (2n-1)no o
1 24 1

J(X)=——| e22z"%dz forn>-=

() ZﬂiL 2

The Bessel functions are normaized: _[OOOJn(x)dx =1forn=0,12,...

2 2
Integrals involving J,(X): j:LMJ dx = 4 and fooo {M} xdx :%
X

Sprina 2010 Eradat Physics Dept. SJSU 18



Fourier transform of a circularly symmetric
function |

Most apertures and lenses have circular symmetry for example

g(x,y) = { Yty <a expresses a circular aperture with radius of a.

x2+y? >a

The circular symmetry justifies usage of cylindical coordinates.

X=rcosé; y=rsing; r=x"+y*; @=tan'(y/x)

f,=pcosg; f,=psing; p=fi+1’ ¢g=tan” (f,/f,)
dxdy = rdrd@:  df, df, = pd pdg:

FLo0un}=6(f, f)=[[ g(xy)e " dxdy
Now apply change of varaibles:

27 * —j27( pcos¢grcosf+ psingrsin
F{O(r 0} =Gylpig) = [, 0], glr,0)e *rireerr it rdr

For circularly symmetric functions g is only function of r. So we write:

g(r,0) = gg(r)
G,(0,9) = J dej g (r)e 1rroeestos ¢)rdr_j gR(r)rer g 127 Peslo=0d g

Sprina 2010 Eradat Physics Dept. SJSU
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Fourier transform of a circularly symmetric
function Il

G, (o, 8) = 'f: o (r)rdr'foh g 120 d g

this relation is correct for any value of ¢ including ¢ =0,

Value of the integral Zijom e 29dg =J,(a) is own known as the
T

zeroth order Bessel function of the first kind.
With substituting a=2zrp and ¢ =0 we get:
Fourier-Bessel transform, B, or
Hankel transform of zero order

B(p) =Gy (p) = 27| "1gq (1), (271 p)dr «

The inverse Fourier-Bessel transform is then:

BY(r,0) = ga (1) = 27| pGy(p)d, (271 p)d p
Conclusions:
1) Fourier transform of a circularly symmetric function is a circularly

summetric function itself.
2) There is no difference between the direct and inverse transform operations.

Sprina 2010 Eradat Physics Dept. SJSU 20



Fourier transform of a circularly symmetric
function Il

Following the Fourier integral theorem. and simmilarity theorem, we get:
BB {0x (N} =B"B{gx(r)} =BB{gs(r)} =g:(r) < when g,(r) is continuous.
B{go(an)} - 56,2
B for Fourier-Bessel transform.

All other Fourier transform theorems apply since this is just a special
case of the general two-dimensional Fourier transforms.

Sprina 2010 Eradat Physics Dept. SJSU 21



Fourier transform of a circular aperture with
radius a

1 x*+y°<a 1 r<a
g(x,y) = — 0g(r) =
0 JxX°+y°>a 0 r>a

Substituting g, (r) in

Gy (0.6) = Gy (p) = 27| "1y () I (277 p)dr

G,(p) =2x joa rd, (271 p)dr

Using the the integral identity: jouu'JO(u Ndu'. =uJ,(u)
r'=2xrp r=0—-r'=0 andr=a r'=2zrap

1 272'8.,0 1 1 1
270 jo r'J,(r)dr

~2rapl(2rap)=a %, (272p) =27a’ %, (272p)
27p o, 2rap

1 ca
Go(p) = szjo 2r pd,(27r p)d (27r p) =

G,(p) = with k, =27p

kK a

Gy(k,)=F(k,)=2za" Pl(k‘ﬁ)J where J, is a first order Bessl function.
Sporina 2010 Efadat

hysics Dept. SJSU 22



Circular aperture with Bessel functions

in MATLAB

x=(-15.1:0.5:14.9);
y=(-15.1:0.5:14.9);
A=y.*X;
i_index=0;
fori=-15.1:0.5:14.9
j_index=0;
i_index=i_index+1;
for j=-15.1:0.5:14.9
j_index=j_index+1;
r=sqrt(i"2+j"2);
if r<=5
A(i_index,j_index)=1;
else A(i_index,j_index)=0;
end
end
end
subplot(2,1,1);
mesh(x,y,A);
title('Circular Aperture’)
axis([-15.1 14.9 -15.1 14.9 0 1));
a=1;
kx=(-15.1:0.5:14.9);
ky=(-15.1:0.5:14.9);
[kax,kay]=meshgrid(kx,ky);

ka=sqgrt(kax."2+kay. 2);
Gka=2*pi*a*2.*besselj(1,ka)./(ka*a);
subplot(2,1,2);

mesh(kx,ky,Gka);

xlabel('kx"); ylabel('ky";

axis(-15.114.9 -15.1 14.9 -1 apEradat Physics D¥pt. SISU

title('Fourier Bessel of Circular Aperture')

1 Jx*+y*<a
g(X,y)Z
X*+y° >a

G, (k,) = F(k,)=2ra

0 1 r<a
—> =
I 0 r>a
2| di(k,a)

k a

a

5

Spring 2010



Circular aperture with Bessel functions In
MATLAB

Circular Aperture

5 y 5 10 k$pring 2010
Eradat Physics Dept. SJSll{J
A
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Circular aperture with FFT in MATLAB

%PHYS 258 spring 07, Nayer Eradat
%A program to plot a circular aperture

function

%and its Fourier transform using fft and shift

fft function
x=(-2:0.05:2);
y=(-2:0.05:2);
A=y."™*X;
i_index=0;
for i=-2:0.05:2
j_index=0;
i_index=i_index+1,
for j=-2:0.05:2
j_index=j_index+1;
r=sqrt(i"2+j"2);
if r <=0.2
A(i_index,j_index)=1;
else A(i_index,j_index)=0;
end
end
end
subplot(2,1,1);
mesh(x,y,A); %3D plot
xlabel('x"); ylabel('y"); zlabel('E";
title("Circular aperture’);
fft_v=abs(fft2(A));
fft_val=fftshift(fft_v);

%shift zero-frequency component to center

of spectrum
subplot(2,1,2);
mesh(x,y,fft_val);

xlabel('fx"); ylabel(‘fy"); zlabel('E");

title('fft of Circular aperture”);

Circular aperture

a0

0
2

Eradat Physics Dept. SJSU _ -2 Fi
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4.4 Examples of Fraunhofer diffraction
patterns

 We can apply the results of Fraunhofer approximation to
calculate the complex field distribution pattern across
any given aperture.

 The physically observable quantity is the intensity of the
radiation rather than the field strength.

* In the following examples we will calculate the intensity
distributions across the apertures.

Sprina 2010 Eradat Physics Dept. SJSU 26



Screen amplitude transmittance function

complex field amplitude

imediately behind the screen
incident complex field amplitude
Screen amplitude transmittance for an infinite opague screen:

Screen amplitude transmittance function=

L (E ) = 1 inthe aperture
A9 =0 outside the aperture

It is possible to introduce for example
a) Phase mask: spatial patterns of phase shift by means of transparent

plates of various thickness
b) Amplitude mask: spatial attenuation by placing an absorbing photographic

transparency with real values between 0<t, <1
These two techniques extend all realizable values of t,

over the complex planes within the unit circle.
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4.4.1 Rectangular aperture |

Goal: calculate the intensity of the Fraunhofer diffraction pattern at
a distance z from a rectangular aperture located on an infinite opaque
screen. Aperture amplitude transmittance:

_rect| = 7
t,(&,m) = rect(zwx jrect(ZWY )

where w, and w, are the half widths of the aperture in £ and 7 directions.

lllumination: a unit-amplitude, normally incident, monochromatic plane wave:
For such an illumination the field distribution just across the aperture is the
transmittance function t,, and the Fraunhofer diffraction pattern is:

U(xy)= fﬂz sl j U e 5 dedy

~/

Fourler transform of the aperture distribution
y
Az

evaluated at fy _/1— and fy =
z

el Koy
U(x,y)= Mze 22 ]—'{U (5,77)}

Sprina 2010 Eradat Physics Dept. SJSU 28
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4.4.1 Rectangular aperture Il

el oty

U (xy)= iz = F it &)

_ 5 i
t, (&)= rect(2WX jrect(ZWY j

F{ta(E,m)} =2w, sinc(2w, f, ) 2w, sinc(2w, f,) with A=4w,w,

el Kty .
U(xy)= 2" 27 Asinc(2w, f, )sinc(2w, f,) |
jkz Ko 2
U(xy)= (_e e’z asin c(zwxxjsin C(ZWij
JAZ AZ AZ
2
L(x,y)=|[U(Xx,y)[ = /1'2‘ —sinc’ (ngxjsin c’ (Zivaj
Z Z Z
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4.4.1 Rectangular aperture Il

2
(X, y) <] U (x, y) P=—2 sincz(zwxxjsincz(szyj

A%7° A7 A7

Exercise: prove that width of the maine lobe or distance between the

first two zeros is Ax = E
WX

Solution: we need to find roots of the I, when y=0, we have

sinc’ (ZWY yj =1 so we need to require

Az
: 2W, X
sin| o
2 2WxX Z 2WXX mAz
sinc =0—> =0->nr =Mz —> X=
Az EZWXX 7 2w,
Az
with m =11 we get x, = Az andX_:—ﬂ—)AX:ﬂ

2W, 2W,y W,
Sprina 2010 Eradat Physics Dept. SJSU 30



Rectangular Aperture
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4.4.2 Circular aperture |

Goal: calculate the intensity of the Fraunhofer diffraction pattern at
a distance z from a circular aperture of radius g located on an infinite
opaque screen. Aperture amplitude transmittance:

t,(q) = circ(ﬂj
W

Circular symmetry suggests using the cylinderical coordinates and the
Fourier-Bessel transformation. The Fraunhofer diffraction pattern is:

ik
I J—(x2+y2) —J— XE+yn)

e
U(xy)="77e HU@ me 4 dédy

/
Fourler Bessel transform of the aperture distribution

evaluated at f :% and f, =
z

Az

ij k 2

g2t B{U (q)}‘

U(x,y)= i1z where r = /x* + y* is the radius in the

aperture plane and p =,/ f; + f° is the radius in the spatial frequency plane.

p=rliz
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4.4.2 Circular aperture Il

lllumination: a unit-amplitude, normally incident, monochromatic plane wave:
For such an illumination the field distribution just across the aperture is the
transmittance function t,,

eij -er

U(r)=——e"2 B{t,(q) e Circ(ﬂj
iz A p=rliz JAz W p=riiz

B{circ(ﬂj} =A %, (27Wp) where A= zw*. With p = L; 2TWp = r

w TWO Az Z
Kk

U (r):_ie"kzejﬂ [2 Jl(kwr/z)}

JAZ kwr / z

2 2

1(r)= (ij [2 Jl(kwr/z)} < The Airy pattern.

Az kwr / z
Width of the central lobe measured along the x and y axis: d :1.22£

w
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4.4.2 Circular aperture Il

Exercise: Prove that width of the central lobe measured along the x and y axis

on the Airy pattern is: d =1.22£

W

2 2
we start from the Airy pattern: I (r) :( A j {2 Jl(kwr/z)} =0 for the roots*.

E kwr/z
J, (kwr/z) _0forr=0 So kwr _ 27zwr 38317 s 1 — 3.8317 Az
kwr / z Z Az 3.14 w
r :1.2203£
W

Using the table we an calculate the other zeros

*First few roots of the Bessel functions for the first kind using BesselZeros[n,k}
iIn Mathematica

Zero | Jp [x) I (x] I3 (] Jz [x] {4 (x] I5 (x]

1 2.4048 3.8317 5.1356 6.3802 7.5883 8.7715

2 5.5201 7.0156 8.4172 9.7610 | 11.0647 | 12.3386

3 8.6537 | 10.1735 | 11.6198 | 13.0152 | 14.3725 | 15.7002

4 | 11.7915 | 13.3237 | 14.7960 | 16.2235 | 17.6160 | 18.9801
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The grating equation

Condition for the constructive interference for a light passing

through a transmission grating:
n,Asin@, —nAsing, =mAi
The grating equation

n,siné, =n,sing, + mﬂ%

A "positive" diffraction order (m>0) «— 6, > 6,
A "nagative" diffraction order (m<0) «— 6, <6,
6, and g, are signed angles poitive counterclocckwise

6, > 6, corresponds to the zeroth order

For a reflection grating bothe incident and reflected
rays are on the same
sideson =n,=n

Sprina 2010 Eradat Physics Dept. SJSU
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4.4.3 Thin sinusoidal amplitude grating |

Goal: calculate the intensity of the Fraunhofer diffraction pattern at a
distance z from a thin sinusoidal amplitude grating.

The amplitude trnsmittance function is:

ta(S:7) = B + % cos(2r foé‘)} rect (Zij rect (ij

W 2W
We have assumed that the grating structure is bounded by a square

y

aperture of width 2w.
m is the peak-to-peak change of amplitude T
transmittance across the screen.

f, is the sptial freuency of the grating. ﬂ H n

thin means the structure can be modeled by a simple

amplitude transmittance (no effect on the phase). U\
lllumination: a unit-amplitude plane wave

t,: the field distribution across the aperture.
Figure: cross section of the grating amplitude transmittance function.

Sprina 2010 Eradat Physics Dept. SJSU

v

36



4.4.3 Thin sinusoidal amplitude grating Il

The Fraunhofer diffraction pattern is the Fourier transfor of t,:

jkz jL(x2+y2 jkz jL(x2+y2
e 22

— € 22 )
fof lee ]:{tA(glU)}

U(xy)=" ' FluEn)

JAZ

fy, fy

but first:

1 m 1 m m
]—“{§+Ecos(27zf0§)}=§5(fx, fY)+Zd(fX + fq, fY)+Z5(fx ~ o, )

F rect(i) rect(lj = Asnic(2wf, )snic(2wf, ) where A =4w* is the
2W 2W

area of aperture bounding the grating.

Ftu(&n) =§snic(2wa ){snic(waX )+%snic(2w(fx i f0)+%snic(2W(fX - fo)}

With f, =x/Az and f, =y/ Az

A () (2wyj . (waj m. 2w m . 2w
U(x,y)=—eleg 2 snic| —= |<snic| —— |+ —sinc(—(f, + f Az)+—sinc(—(f, — f Az
(xy) jAz Az Az 2 (/’Lz( X ) 2 (;tz( x =~ A7)
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4.4.3 Thin sinusoidal amplitude grating Il

And finally

12
1(x,y)= {i {e"kzejzkz(xuyzqsnicz (Mj
JAZ | Az

2
. [ 2wWX m . 2W m . 2W

snic| —— |+ —sinc(—(f, + f.Az2)+—sinc(—(f, — f. Az
{ Mj Nsinc(2(f, + f,42) + Dsinc((f, o>}

2]

For f, > 1/w or for a very fine grating rulling the overlap between the sinc
functions is negligible and | is approximately eual to the sum of squared amplitudes.

2
snic® (a—ﬁyj{snic(%j+%sin c(%(fx + foﬂ,z)+%sin c(i—vzv(fx — fo/lz)}

2

2
A L, ( 2wy L 2wx) m® ., 2w m> . , 2w
1(x,y)~| ——| snic?| —= |{snic?| —= |+ —sinc*(=—(f, + f,Az)+—sinc’(=—(f, — f, 1
(%) {/1} '(mj{ ! (izj+4l (zz(x+°z)+4' (/Iz(x oA2)

n = Diffraction efficiency = fraction of the power in a single order of the Fraunhofer diff. patteren.

It can be found from: ]—‘{%+%cos(27zf05)}=%5(fx, f, )+%5(fX + f,, fY)+%5(fx — o, 1)

Since the delta functions determine power of the pattern and sinc functions only spread them.

1) m) m? m) m? 1
=|=| =025 n=|—| ===, n,=|—| === SO 17 == =06.25% and total power
o (2) g (4} 16" (4] 16 T i P

in 3 orders is 3/8. The rest of the power is lost by absorption of the grating.
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4.4.4 Thin sinusoidal phase grating |

Goal: calculate the intensity of the Fraunhofer diffraction pattern at a
distance z from a thin sinusoidal phase grating.

The amplitude trnsmittance function is:

t,(&.m) = \e[jZSi“(Z”foﬁf)}J rect (ij rect (l)

Sinusoidal ph\ése difference 2W 2W
introduced by the grating

average phase delay caused by grating is elliminated by proper choice of teference.
We have assumed that the grating structure is bounded by a square aperture of width 2w.

m is the peak-to-peak excursion of the phase delay.
f, is the sptial freuency of the grating.

thin means the structure can be modeled by a simple phase transmittance (no effect
on amplitude).

lllumination: a unit-amplitude plane wave

t,: the field distribution across the aperture.
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4.4.4 Thin sinusoidal phase grating |
t,(&,m) = e{J SIn(z;ﬁog)}rect(gj rect i)

2W
U(x,y)=

jkz j— k (x24— 2)

el FUEY, = o Fitu(&m)|,

: . . j~sin(27 fo&) o0 m
Using the Bessel function identity: e{ 2 }: Z J ( jeﬂﬂqfof

st~ #{ £, oo o o 1)
Flt(&n)) { ( j —ah, 1))@

Fta(&,m)} = ZAJ( jmc[Zw y qf smc(waY)

q=—0

U(xy)= A gieg] )ZJL [JsmcL(1 (x—qf iz)}sinc(wj
Sprina 2010 jﬂ,Z Erédar Phy cs ept. SJ Z & 40
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4.4.4 Thin sinusoidal phase grating Il

t,(&n)= e[J Sm(mog)}rect(ij rect(ij

2W 2W

U(x,y)= A e‘kze-22 ZJ ( sinc[i—vzv(x—qfo/lz) sinc(Mj

JAZ Az

2

A ' 2w : 2wy

| = eleg’2 J sinc x—qf.Az) [sinc| —Z
(MZ Z ( j 77 )} pr n

| AL

For f, >1/w or for a very fine grating rulling the overlap between the sinc

functions is negligible and I is approximately eual to the sum of squared amplitudes.

( j ZJ( jsmc 2w x— qf,Az sincz(zﬂj
) Az —— Az

Displacement
of the order
fromthe center

We see that introduction of the sinusoidal phase grating has deflected power from
the zeroth order to the higher ordes.

2
Peak intensity of the qth order = LAJq (%H
Z

It happens when y =0 and x-qf,Az=0—> x=qf,1z

Sprina 2010 Eradat Physics Dept. SJSU
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4.4.4 Thin sinusoidal phase grating Il

Displacement of gth order from the center of the pattern = gf,1z

For q =0 or zeroth ordery=0and x=0

For g =+1 or first order y =0 and x = = f,Az function of frequency of the grating lining,
wavelength, and distance of observation.

So for spectroscopy in the blue region we need hight f, grating or larger spectrometer.

n = Diffraction efficiency = fraction of the power in a single order of the Fraunhofer diff. patteren.

It can be found from: F {t, (&, 7)} {Z J ( jé(f —qf,, fY)}®[Asin c(2wf, )sinc(2wf, )]
Since the delta functions determine power of the pattern and sinc functions only spread them.

m
=t

Plot 7, =J (2} we see that when m/2 is root of J, then the central lobe wanishes. 7, ..., =33.8%

which is much greater than that of the sinusoidal amplitude grating which is % = 6.25.

There is no power absorption and sum of the power in all orders is equal to the total incident power.
The distribution of power between the lobes varies as m changes.
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4.5 Examples of Fresnel diffraction
calculations

 Based on the example we will choose a different
approach to the Fresnel diffraction examples.

— convolution representation.
— Frequency domain approach

Sprina 2010 Eradat Physics Dept. SJSU
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4.5.1 Fresnel diffraction by a square
aperture |

Goal: calculate the intensity of the Fresnel diffraction pattern at
a distance z from a square aperture of width 2w located on an infinite opaque
screen. The amplitude transmittance function:

_rect| £ /A
t,(&n) = rect(zwj rect(zwj

The complex field imediately behind the aperture:

- rect| = |rect| L
U (5,,7)‘2:0 = rect(zwj rect(ZWj

lllumination: a unit-amplitude, normally incident, monochromatic plane wave
Using the convolution form of the Fresnel diffraction formula:

U (X, y) :%J‘ J‘ eiﬂ[(x—é) —(y-n) }dédn
U(x,y)= ejjkz Z(X)Z(y) where
T(X) = —— J_ je all dgdn and  T(y)=—— J_ je il dgdn

Sprina 2010 Eradat Physics Dept. SJSU
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4.5.1 Fresnel diffraction by a square aperture |l

Change of variables:

o= %(g—x) and ,B:\/z(n—y)
T(x) = je 4o and  T(y)= > Tejzﬂzdﬂ
\/__a NERA

alz\/%(w+x) and azz\/%(w—x)

2 2
ﬁlz\/%(w+ y) and B, = E(W—y)

With the Fresnel number: N. =w”/ Az and normalized distance variables
In the observation region we have:

and y=_1_ the limits of the integrals become:

f Jaz
\/_( o+ ) and a2=\/§(\/N_F—X)
V2 (N,

+Y) and p, :ﬁ(N—Y)
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4.5.1 Fresnel diffraction by a square
aperture Il

. ) jzaz a; jﬁaz o jﬁa2 .
Using e ? da:jo e ? da—j e 2 da and the Fresnel integrals:
.0{1

o7 2
C(z):ocos(ﬂ;)dt and S(z J'sm( jdtwewrite
1

I(X):\/,{[C(az)—C(al)]+j[S(az)—S(al)]} and
z(y>=T{[ (8,)-C(B)]+i[s(5)-5(5)]

sz

U(x,y)= — {[c(az)—c(al)}j[s(az)—s(al)]}

J
<([C(£)-C(B)]+i[s(5)-3(8) ]}
1(x,y)= {[C a,)-C(a,) ] +[S (a,) S(al)]z}

<{[e(8)-c(p)] +[s(5)-s(5)]|

Sprina 2010 Eradat Physics Dept. SJSU
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Fresnel integrals

Fresnel integrals are defined as:

C(z)+iS(z jezzdt

0

2
C(z)= cos[%jdt and S(z):osin(%jdtwewrite

L kY YRy
0.7TS l_.-""'._ o .6 % R os e
l-_.l i 5 .I_ :-. { _-. _.' _.; _-:-_.'.:'._1: I:l ) 4 .I-. r.- :_ F'_r'. -_.. \¥ ll|ll IT
0.2%0 0,2

=11, Eﬁl -0 2]
-::_‘-'-";- 'I:-‘ -:-'- 'I- :I'E'-.:.E Lt g - -u Ll
TR Y R -._. i T -.. FILI I=-
-0 TR | Spring 2010
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Re[£12]] Tre £12]] =

The Fresnel integrals
S(u) and C(u) are entire
functions or integral
functions i.e. they are -
analytical at all finite points
of the complex plane.

The Fresnel integrals are !

tabulated and are available *°
In many mathematical
computer programs

Eradat Phy



4.5.1 Fresnel diffraction by a square
aperture Il

Fresnel integrals:

oo s s n{ 1o

()= ([0 ()~ (@) +[8 () (@) |x{[C(8)-C ()] +[5(8) -3 ()]

N. =w’/ Az for a fixed w and A, as z increases, the Fresnel number decreases
and the true physical distance distance represented on the x= X+ 4z and

y =Y+/Az axis are increased.
Figure shows the normalized intensity distribution along the x axis (y =0) for

various normalized distances from the aperture as represented by fresnel number.
Asz—0, o > and f — o, N. becomes very large and U (X, y) approaches

the product of a delta function and e and shape of the doffraction pattern
approachs the shape of the aperture. Limit of the process is the geometrical optics
prediction of the complex field:

_ . Spring 2010
U(x,y)=e"U(x,y,0) Ered&r@nv%ie)s(DjameSZLj Pring
2W 2W
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Fresnel diffraction patterns at different
distances from a square aperture.

f '

|I§}'5,'|'.'. |'| M, =4
| | .Aadl |

||IIL:lII ¥ \

(st U
|

L 5 | i
fl M ‘i R M.=10
| '|l|-.| ,'-_1||_.-|"|].' |
I | | ll !.I ?? v LI .-|| |
¥ el "PA
|
.'I L |
f 8.5 ‘
ﬁ__..-" L ?
D e < 1 g
4.3 -2 -1 2 3

As N approaches infinity diffraction
pattern becomes sharp and narrow
approaching the georettacahysics Dept. SISU
shadow of the aperture

As N->0 diffraction pattern becomes
wide and smooth approaching
Fraunhofer diffraction

0.08,+,
N-=0.01

Jn |

E_':'.,'I | Ill r"'l. =1.0

I

fsf |

|I 1 :|

AT 'E'E%pring 2010

e ™ i L}
9 2 - K 2 3



4.5 2 Fresnel diffraction by a thin sinusoidal

amplitude grating-Talbot images |

Goal: calculated the Intensity distrubution of the diffraction by a thin

sinusoidal amplitude grating using the Fresnel diffraction formulation.

For simplicity we neglect the finite extent of the grating.

The field transmotted by the grating has a periodic nature or we limit the

attention to the central region of the pattern.
The amplitude transmittance function

> S

Is modeled as: g

(&) = %[1+ moos(2z& /L] /

AY

Where L is the period of the lines /'Z
parallel to the axis 7. /
lllumination: a unit amplitude normally //

incident plane wave.

The field immmediately behind Grating

) ) structure
the grating is t,.
Sprina 2010 Eradat Physics Dept. SJSU
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4.5 2 Fresnel diffraction by a thin sinusoidal
amplitude grating-Talbot images |

We will use the convolution form of the Fresnel diffraction equation

{ 22[(x £V +(y-n) ]}

HU@ n)e dédy

or the Fourler transform of the equation

U(xy)=

k2 2
Fourier transform of the U (&,77)e 22( ! ) which is complex field
just to the right of aperture muItipIied by a quadratic phase factor

jkz

e (52 n’) - 125 (xg+yn)
U(Xy)=- U o 22 e * d&d
(%) Mz H{ (&) } £dy
Seond form of the Fresnel diffraction integral ’
Where r,, >> 1, X8 g Yo
Z Z

near field of the aperture or Fresnel diffraction region

and scalar theory approximation are assumed

Or we can use the transfer function approach:

Jﬁﬂ,z( fu 2+ fY2)

H.(f,,f,)=ee
Sprina 2010 Eradat Physics Dept. SJSU



4.5 2 Fresnel diffraction by a thin sinusoidal
amplitude grating-Talbot images Il

By omitting the constat term e, H_ is:
He (f ) =e i)

In any problem that deals with a purely periodic structure, the transfer function
approach yeilds the simplest calcultions.

1) find the spatial frequency spectrum of the field transmitted by the aperture:

t,(&,n)= %[1+ mcos(27& /L]
1 m m
F{tA(f,n)}:Ed(fx,fY)+25(fx+f0,fY) n
1 m 1 m 1
f{tA(f,n)}:E§(fx, fY)+Zd(fx T ij+Zd(fx T ij

j becomes

5(fy —fy, f,); with f, ==

The transfer function evaluated at

|—||—\

AL
H (i%,o) e and it is unity at the origin. So after propagation

of a distance z the Fourier transform of the field becomes:

1 m -i% 1 m -i% 1
f{u(x,y)}=§5(fx,fY)+Ze’L 5(fx+t,ij+Z e 5(1‘ — fY)

72'/12 27X Az 27rX

1 1 -
Sorina9d0Y) = F ]:{U (X, y)} e %radae[ PhV_EIES%)eDt €sJsu
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4.5 2 Fresnel diffraction by a thin sinusoidal
amplitude grating-Talbot images ll|

1 J”éz 27zX
U(x,y):E 1+me Y cos =

1(x,y)= %{H 2m cos[”éz)cos(_zfx}r m?2 COSZ(ZfXﬂ

Now consider 3 special cases for the observation distance:

Az 2

L2

A
2
1(x,y)= %{H 2mcos KZLLXJ +m? cos® (—foﬂ — %{H m cos(—zfxﬂ

this is perfect image of the grating. These images that are formed without

=2NnT > 7=

1) where n=0,%1,42

aid of a lens are called "Talbot images" or "self-images".

Mz _2niD)r _(2n +1)L°

I(x,y)=%[1—2m005(2—ij+mzc°sz(2—fxﬂ ﬂl mcos(zf ﬂ

This is also image of the grating with a 180o spatial phase shift or

"contrast reversal'. These too ar albog @ages
Sprina 2010 Era at VSICS
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4.5 2 Fresnel diffraction by a thin sinusoidal
amplitude grating-Talbot images Ill|

Tz

3)

( Tz
cos| =

(%, y)=

12

(-2

(2n—1)%—>z:

where n=0,+1 +2 then

1+ cos(4rx)

j: 0  Using cos? (fo

1 1+ m? cos® [@j
4 L

1

4

|

2

m? )\ m?
1+— |+—cCO0S
2 2

)

This is an image with twice frequency of the original grating and has

2

reduced contrast (nisted of 1 and m we have 1 and m7 and the background

is now brighter by +m®/2. This is called the "Talbot subimage".

For example for m=0.3 we have m*/2=0.045

Sprina 2010

Eradat Physics Dept. SJSU

55



Locations of Talbot image planes behind the
grating

Talbot
subimages

A guide to
the eye

: Talbot
Grating  phase mage  Dnase E:’O;
reverse reverse g
Talbot _Talbot
image oL2/3 Image
) 22/, ]
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