Fourier Integrals

Nonperiodic waves
Fourier Integrals



Nonperiodic waves

e In optics and quantum mechanics all real waves are

pulses.

* |In order to generate a pulse out of harmonic functions
that have a certain width and shape, we need to know

— what frequency elements to add
— How much of each frequency element to add
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Addition of waves: different frequencies

To generate beats we added two frequencies o, and o,
E =2E, cos[kmx—a)mt]xcos[ﬁx—;ﬂ

the carrier frequency is average of the added frequencies @ = %(a)l +w,)

1) If we add more frequency elements symmetrically around «, then

o will not change.
2) If we reduce the spacing between the frequency elements, then

frequency of modulation @_ =%(a)1 —w,) will decrease. This is the

frequency of the envelope meaning the beats will have more separation.
3) When number of frequency elements go to infinity, we will have a
single pulse. The 4 goes to infinity.
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Beats with different frequency intervals
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Square Wave

For the following square wave

“Ala<x<i/
f(x) :{gl f,:jf;ﬁ?a

The Fourier components are

f(x)= —+ Z sin c(ms Jcos(mkx)

~a
Frequency spectrum is amplitude

even

of each frequency component in f (x)
vs. K. It expresses weighing factors

of each harmonic component at

any spatial frequency present in

the synthesis.

Let's keep width of the peaks constant

while increasing the wavelength.

Zeros of the sinc function happen
at constant mk. As k gets smaller

because of large wavelength, m
number of harmonics gets larger.
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Square wave; time domain A=
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Frequency spectrum SN

of a pulse

As we increase the separation
between the pulses, the Fourier
components get closer in the
frequency space.

As the wavelength goes to infinity,
the wave gets closer to
expression of a pulse, the Fourier
components get closer and
leading to a continuum.

At the limit we have a pulse in
time domain and a continuous
Fourier series in frequency
domain known as Fourier integral
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Fourier Transforms

As A — o or k — 0 the Fourier series transforms to Fourier integrals

Finite A > f(x)=)_ A, cos(mkx)+ > B, sin(mkx)
m=0 m=0

Infinite 2 — £ (x)=lim (Z A cos(mkx)AK + mzzo B, sm(mkx)Akj

m=0

Infinite A — | f(x)= iﬁ A(k)cos(kx)dk +T B (k)sin(kx)dk}

Using the orthognality of sine and cosine functions we can find:

A(K) = Of f(x)cos(kx)dx| | B(k) = T f (x) sin(kx)dx

—00 —00

A(k) and B(k) are called Fourier cosine and sine transforms of the

function f (x).
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Complex representation of the Fourier
transforms

f(x):iT F (k)e*dk

27T

—00

F(k) = T f (x)e*dx

—00

The function F (k) is spoken of as the Fourier transform of f (x)
F (k)= Ak)+iB(k) = F{ f (x)|

The sine and cosine transforms are:

FLE(X) =T L f ()} +iFs{ £ (X))}

And inverse Fourier transform of F (k) is:

f(x)=FH{F(k)}
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Two dimensional Fourier Transform

f (X, y) = 27T H‘ k| y —i(kxx+kyy)dkxdky

F(k,.k,) = ” (x,y)e'“*" dxdy
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Gibbs Phenomena

Overshoot of a synthesized f(x) by 9% of the amplitude
at discontinuities, known as Gibbs Phenomena, is due to
the limited number of Fourier components used to create
f(x).

When N actually goes to infinity, f(x) would be 100%
accurate.

For limited N there is oscillations in f(x) with frequency of
Nfo-
When the N is large enough the width of the oscillations

1/2Nf, goes to zero and the overshoot contains zero
power.

This allows usage of Fourier series even if there is a
discrepancy with the actual function.
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Exercise
4.1)

a) Calculate Fourier transform of the square pulse
given in this figure.

b) Plot the 7 { f (x)}
c) Use FFT function in MATLAB to plot the 7 { f (x)}

What happens to the zeros of F as L increases?

Ans: F{f(x)} =7 {f(x)} =E,Lsin ck—ZL 9|

172 0 +L/2
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Exercise
4.2)
a) Calculate complex Fourier transform of the function given in this figure.

b) Plot the 7 { f (x)}
c) Use FFT function in MATLAB to plot the 7 { f (x)}

| . _sin?(kd /2)

Ans: F{f(x)}=iF { f(x)}=2iE,d i/

Use F{f(x)} =7 {f(x)}+iF{f(x)} or the exponential representation

Note /. and F, are real. f(x)“
EO

-d 0 d X
_EO
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Exercise

4.3) a) Determine Fourier transform of the wave train given by
E, (x) = P(x)cosk x and E,(x) = P(x) cos’ k,x where P(x) is the unit square

pulse. k is the spatial frequency of the oscillatory region of the pulse.

b) Plot the Fourier transform for both E; And E,.
c) Sketch the transforms in the limit as width of the P(x) extend to infinity.

d) Use FFT function in MATLAB to plot the 7 {E(x)} for both functions.
Ans: F{E,(x)} = 7 {E,(x)} = L[sinc(k, + k)L +sinc(k, —K)L];

F{E, (X)) = e {E, ()} = LsinckL+ sine(k-+ 2k, )L+ sine(k -2k, )L

A A P X 1
E\(%) E,() )
1
n |
R > -L 0 +L X
L C +L X L 0 +L X
U U U U U UPHYS 258 Sprina 2010 SJSU Eradat Fouriet intearals 13



Time domain Fourier transform

The same wavepacket of exercise 4.3 in time domain:
E,cosot  -T<t<T
E(t) =

0 It>T

f(t)= % T F(w)e'do

F (o) = T f (t)e'dt

—Qo0

]—‘{E(t)} = A(w) =T[sinc(w, + @)T +sinc(w, —o)T];

A(K)

A‘( ®)

kp k+% oa+n/'R

VA TR A v AN/ o
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Frequency bandwidth

In time domain temporal width of the pulse is At =2T while 0 <@ < w

and width of the transform is said to be Aw =~ 2T—7Z Thus AtAw =4r

Product of the width of the pakage in t-space and w-space is constant.
In frequency domain spatial width of the pulse is Ax=2L while 0 <k <o

and width of the transform is said to be Ak = ZT” Thus AXAK =4r

A(K)
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Uncertainty relations

Product of the width of the pakage in k-space and x-space is constant.
Aw, Av=Awl2r and Ak = 27A4/ A% are known as frequency bandwidths.

Choice of Aw and Ak are somewhat arbitrary.

Important fact is that AtAv =1 and AxAK = constant

These relations are known as uncertainty relations and have profound
practical importance. They impose limits on accuracy of our measurements
or precision achievements.

Choosing a frequency bandwidth of Av restricts us in receiving signals

1
that are shorter than or At = ~
y
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Coherence length

If a wavetrain has frequency bandwidth of Av, it has been produced
within At =1/ Av time interval from a group of oscillators. These
oscillators may have produced waves that have constant phase
relationship with each other only during At.

The next wavetrain has a completely different phase relationship.
At, Is known as coherence time of the source.

Al =cAt, i1s known as the coherence length of the light produced

by the source.

Av Is due to natural linewidth of the plus which is due to different
broadening mechanisms such as thermal (Doppler effect), collision

etc.
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Meaning of negative spatial frequency

« Complex representation of Fourier transforms gives rise
to a symmetrical distributions of positive and negative
spatial frequency terms.

o Certain optical phenomena such as diffraction occur
symmetrically in space.

* A relationship between these phenomena and spatial
frequency spectrum can be constructed if we use both
negative and positive spatial frequency terms.

* Negative frequency becomes a useful mathematical
device to describe physical systems that are symmetrical
around a central point
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About the constants of the Fourier
transforms

f()=a [ F(K)e ™ dk

F(k)=2 j f (x)e™dx
a and g can be anything as long as

aff= 2i for the 1D Fourier transforms
T

1

= for the 2D Fourier transforms
T

aff=

When o« = we have symmetric Fourier transformation.
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Parseval’s identities for Fourier integrals

Sum of the squares of the Fourier coefficients of a function is equal
to the square integral of the function.

. . . 1 L 2 . IAbZ = 2 2
For Fourier series: II—L{ f(x)} dx= 7+mZ;(An = Bm)
If F (k) and G, (k) are Fourier sine transforms of f (x) and g(x), then

| R(k)G, (kK)dk =[ "  (x)g(x)dx
If F. (k) and G. (k) are Fourier cos transforms of f (x) and g(x), then

[ Fe (k)G (k)dk =] F (x)g (x)dlx

If f(X) =g(x) then

ARG dk=["{T(0} dx and [ {F.(k)}" dk=["{f(x)}
For general Fourier transforms:

[ F0GK) dk=[" f(x)g(x)"dx

G(k)" is the complex conjugate of the G(k)
PHYS 258 Sprina 2010 SJSU Eradat Fouriet intearals
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The convolution theorem

If F(k) and G(k) are the Fourier transforms of f (x) and g(x) then
j " F(K)G(K)e ™dk = f f (U)g(x—u)du

If we show the convolution of the functions f and g with f *qg,

PO T _
f g_mj_wf(u)g(x u)du

Fit*gp=7{f}F{9;
Fourier transform of the convolution of two functions is equal to

the product of their Fourier transforms.
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Discrete Fourier transform

« Analytical Fourier transformation is possible for some
functions.

 If there is no functional representation of data such as
Image of a person or collection of data points, then how
we perform Fourier analysis?

 There is a numerical technigues to determine frequency
content of such data known as discrete Fourier
transform.
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Analysis of two-dimensional Signals and

systems
e Linearity iIs a common property of many physical

phenomena

ﬂ

Stimuli

!
ul

\Y

lany stimuli
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Linear systems theory

« Optical imaging operation is a linear mapping of object

light distributions to image light distributions.

e This mapping is done by the wave equation.

Linear systems theory gives us the ability to express the

response to a complicated stimulus in terms of the

responses to certain elementary stimuli.
Some mathematical tools are used in describing linear

phenomena
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Two dimensional Fourier transformation

Goodman's notation: f, is equivalent to k, spatial frequency in x diretion
Fourier transform or Fourier spectrum of a complex-valued function g(x, y)

with two independent variables x, y (space) is:

G(f,, f,)=F{gxy)} =[] g(xy)e " dxdy

The transform itself is a complex-valued function of two independent
variables f, , f, (frequency)

The inverse Fourier transform of G( f,, f,)

FHGY =[] G(fy, f,)e™ ™t df,

or Fourier integral representaion of function g(x, y)
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Fourier transformation as a decomposition
of g(x,y) in 2D

In dealing with linear systems we need to decompose a complicated

input to a number of simple elements. Fourier transformation does this job.

g(\)=F G} =] G(fy) ™ df

— Elementar
Weighting ,nction d
factor or

Amplitudes

This is expressing the space function g(x) in terms of its frequency spectrum

G(f0).
This is linear combination of the elementry functions of the form e/*"*

The G(f)s are the weighting factors or amplitudes of each function.

PHYS 258 Spring 2010 SJSU Eradat Fouriet intearals
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Decomposition of g(x,y) in 2D

Goal: Finding orientation and frequency of the constant phase lines for exponential

elementary functions.

For 2D Fourier transforms the elementary functions have the form: g2 (i)
For each frequency pair (f,, f,) the corresponding elementary function has a zero
or 2zm phase along the lines described by:

f, n : :
y = X X+— where n is an integer.

fY fY S\“ y

— :
Slope of the line perpendicular
to the constant phase plane

So the elementary functions are being directed in

(x,y) plane at an angle @ with respect to the x axis.

0 =tan™ [f—xj
fY

and spatial period of L=

1

& sind = L to find L)
1/ f

(Use cosd =

X Y \
So we see the inverse Fourier transform as a form of decomposition

with a periodic nature of the exponential elementary functions.
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Fourier transformation and existence
conditions

Existence conditions (sufficient):

1) g must be absolutely integrable over the finite (x,y) plane

2) g must have only finite number of discontinuitiesand a finite number
of maxima and minima.

3) g must have no infinite discontinuities.

If a function does not satisfy all of the above conditions and yet can be
written as sum of the functions that satisfy the conditions, we can

Fourier transform it by taking the Fourier transform of the pieces.
Limit of this new sequence is called generalized Fourier transform of

the function.
If the transform exists, then we use it and don't worry about the
existanace conditios.
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Fourier Transforms (summary)

o0

1D Hecht) g(x):zij F(k)e™dk  F(k)= T f (x)e™dx

T

—00 —0o0

2D Hecht) f(x,y)=

X1ty

k ) —|(kxx+kyy)deC”(y

(2 )
2D inverse Hecht)  F(k,.k,) = ” (x,y)e'“*Ydxdy

2D Goodman) g(x,y)=F*{ ” , )@zt gt df,
2D inverse Goodman) G(f,, f,) :f{g(x, y)} :”_ g(x,y)e tZ e dxdy

Note: the reason Goodman's notation does not have the coefficients 1/(27;)2

IS that he uses spatial frequency f, =1/ 4, insted of wavenumber k, =2z/ A,

—i(kyx+kyy)

Here e or el?7x** ) gre the elementary components that the signal

IS made up of and F (kx, ky) or G( f,, f,) is a complex function that containes

iInformation about the phase and amplitude of each elementary components.
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Fourier transform theorems |
1. Linearity theorem: transform of sum is sum of transforms

Flag+phi=aF{g}+pF{h}

2. Similarity theorem: sreatch of coordinates in space domain

results in contraction of coordinates in frequency domain and

a change in amplitude of the spectrum

It F{g(xy)} =G(fy, f, ) then F{g(ax,by)} :@G(Zgj

3. Shift theorem: translation is space domain produces a

linear phase shift in frequency domain.
Iif F{g(x,y)} =G(f,, f,) then F{g(x—a,y—b)}= G(f,,f,) e!* >

Phase shift

J/
'
Fourier transform
is not affected
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Fourier transform theorems Il

4. Rayleigh's enrgy theorem (parsewal's theorem): the sum (or integral) of the

square of a function is equal to the sum (or integral) of the square of its transform.
If F{g(x,y)} =G(f,, f,)

Then _[T|g(x,y)|2dxdy :_[T[G(fxv,fY)Fjdfxde

=00

energy density in
frequency domain

Energy contained in the waveform 9(x.y)

For the Fourier series the Parsewal's theorem takes the following form:

R dx=%+m§;(A§ +8?)

5. Convolution theorem:
If F{g(x,y)} =G(f,, f,) and F{h(x,y)} =H(f,, f, )then

f{ H g(f,ﬂ)h(x—f,Y—ﬂ)dfdﬂ}=G(fx, fy )H(fx, fy)

Convolution in space domain < multiplication in frequency domain.

PHYS 258 Spring 2010 SJSU Eradat Fouriet intearals 31



Fourier transform theorems Il

6. Cross-correlation is a measure of similarity of two waveforms as a function of a
time-lag applied to one of them. It is commonly used to search a long duration signal
for a shorter, known feature. It also has applications in pattern recognition, single
particle analysis, electron tomographic averaging, cryptanalysis, and neurophysiology.
Flaxy)}=G(fy, f,) & F{f(x,y)}=F(fy,f,) then cross-correlation of f, g is

h(x,y)=f*g=[[ f(&na (E-xn-y)dédy

Autocorrelation is the cross-correlation of a function with itself. If Z{g(x,y)} =G( f,, f,)

f{ J.T g(é:!n)g*(é:_xin_y)déjdn}_‘G(fx’ fY )‘2

then The theorem is a special case of

F{ox y)2}=j°fe(5,n)e*(§— feun—f,)d&dy

the convolution theorem in which we convolve g(x, y) with g” (=X, —Y)
7. Fourier integral theorem: at each point of continuity of g,

FFHax N =F F{a(xy)}=9(xy)
The two successive transforms yeild ]—“{ F{ g(x, y)}} =ag(-x,-Y)

the successive transformation and inverse transformation of a function are not
exactly the same although for even functions they differ within a constant.
8. Fourier transform of a separable function can be written as:

f{ g(x, Y)} = ]:x{ Ox (X)}FY { Oy (y)} if g(x, y) =0y (X)gv (Y)
PHYS 258 Spring 2010 SJSU Eradat Fouriet intearals
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Exercise |

4.4) Fourier transform of the square pulse f (x)={;' o[/

]-"{ f (x)} =E,Lsin ck—ZL. Use the Fourier transform theorems to find the Fourier

tansform of the following pulses. In each case mention the theorem used.

a) fa(X)z (')Ef -L<xs<L b) fb(x)= (I)Ef -al<x<al c) fC(X): Ef l;(;/f/s;sub

IXi>L Ix|>al
df, ()= S ©fL(0)=%" Ll
f) If g(x) = E, cosk,x find F{g(x)} then F{f(x)+g(0)}; F{f*(x)}; F{g*(
F{f(x)*g(x)} where * is the sign for convolution.
g) Calculate f(x)*g(x) directly without using any of the theorems. Then take

the Fourier transform of the result to confirm the convolution theorem.

g(x) f(X)‘

A

v

C X 0

L2
VU VIV U

PHYS 258 Spring 2010 SJSU Eradat Fouriet intearals

+L/2

v

33



Delta function

The delta dunction is a Generalized Function that is defined as the limit
of a class of delta sequences. It is also called "Dirac's delta function" or

"Impulse symbole".
A generalized function is generalization of the concept of a function and

they are particularly useful in making discontinuous functions more like
smooth functions.
A delta sequence is a sequence of strongly peaked functions for which

lim j:5n(x)f(x)dx: f (0)

As n — « the sequences become delta functions.
A Fundamental property of the delta function:

) ji f (X)5(x—a)dx = f () and in fact j f(X)S(x—a)dx = f(a)

PHYS 258 Spring 2010 SJSU Eradat Fouriet intearals
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More identities with delta function

1) 6(x-a)=0 forx=a III)5(ax)=i5(x)

]

V) 8(x° -a?) =ﬁ[5(x+a)+5(x-a)]
) olg00= 5 o )‘)
VI) x8'(X) = -1(x) or more generally x"8™ =(-1)"n15(x)

where 6™ (x) is nth derivative of the delta function with respect to x
VI 8'(-X) =-6'(X)

where x; are the roots of g

VIII) IOO f(x)o'(x-a)dx=-f '(a) which is equivalent to convolution
(5™ f)(a) = j (a—x) f()dx=—f'(a) ??
IX)I_w‘5'(X)‘dX:w X)x?6'(x) =0 XI)J 5( )dx 0

XIlI) ff(x)é(x-xo)dx:f(xo) sifting property
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Delta function in higher dimensions

In two dimension: In three dimension:
0 X +y*#0 0 X°+y2+22 %0
52()(’ Y)Z{ 2 2 53()(’ y’z):% 2, 2 | 52
00 X“+y" =0 o0 X“+y" +2°=0
[ [ 6% y)xdy =1 [T 0y 2)oxdydz =1
2 _ 1l e 53(ax,by, cz) = ——&°(x, y,
S (ax,by)_Ed (X, y) (ax, by, cz) —be (X,Y,2)
52(x,y) = S()S(Y) 5°(X,y,2) =5(x)5(y)5(z)
In polar coordinates: In cylinderical coordinates:
2 o(r) 5%(r,0,2) = o(r)o(2)
o°(r,0)=——= e —
au .
In polar coordinates:
o(r)
5°(r,0,¢) =
( ?) 27r?
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Some delta sequences*

If we take limit of any of these sequences and let n — «, we will have

a delta function.

1) 5(x) = lim+

N—o0

2) 6(X) = lim — g

3) o(x) = Iim—sin c(nx)
- 71

—inx

1) 5(x) = lim— & =°
n—w X 21

5) 5(x) = lim i[em}l

n—o 27z|x

6) 5(X) = I|m— j eXdt

n—oo 72'

sin{(n+l) x}
7) o(x)=lim L 2

n—o0 272' . (1 j
SIn| —X
2

*Arfken

n -—<X<—
- 5,(x) =1 " "
0 —| <X
\ 2n
n 2,2
>0 (X)=—=e""
W=7
—J,(X)= D sin c(nx)
T
L 5.(X) = 1e —_e
nx 21

S5 5.() :%[em]?n

—>6.(X) = i j_”neixtdt

[t
-l

— 5,(x) =
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Some delta functions*

1 ..
1) 6(xX)=—Iim ;
) () 7T e0 X2 + g2

2) 5(x) = |ingg\xr‘1;

3) 5(x) = lim 1 g X 14s

e—0" 2\/E
4) 5(x) = |imisin(fj;

e—>0 71X E

e>0 ¢ & 27T ¢

6) o(X) = Iirrgi\]l,g (X—Hj J.(x) is a Bessel function of the first kind
E—> g g

i e-X2 l& Ln (gj
& &
1 e—Xt/(l—t)

positive integer order and L (X) = <_[> —dt contur encloses the
27 ¥ (L-t)t™

origin and traversed in a counterclockwise direction.
*
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5) 5(X) = limL Ai Léj; Ai is the Airy Function Ai(x) _ L goueng

7) 0(X) = Ié|®r9 ; L, Is a Laguerre polynomial of an arbitrary




The delta function as a Fourier transform

The delta function as a Fourier transform Is:
5(x) = [1]=] e*dk

F ()] = j_z S(x)e *dx =1

Fourier transform of the delta function iIs

Fy [5()( — XO)] = jjo ejkxg(x _ XO)dX _ plko
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Fourier transform of the Gaussian Function

Example: f (x) = Ce™ is profile of a Gaussian pulse at t =0, where a is a constant and
C =+/al/z. Prove that the Fourier transform of f (x) is a Gaussian function. Then show
that the product of the widths of the function and its Fourier transfom is a constant.

What is the value of the constant if we choose to measure the width at e™? of their maxima?
Ans) F(K) = J_oo (Ce™ )eMdx=e*"*, & :i, o, =+/2a

X \/g
2
2
—ax2+ikx:—(\/5x—ik/2\/aj —k2/4a=—ﬁ2—z—, dx = 38
’ a

Ja

F(K)= |2 el [" e d g = e 7 > [F(K) =&
iva Jr

The Fourier transform of a Gaussian is a Gaussian function with a different coefficients.

We measure the width of f (x) and F(K) at 1/+/e =0.607 of their maximum and call the

corresponding x and k the standard deviation (o, and o, ) of the function and its Fourier

transform. o¢,*/4a=1/2— 0, =v2a ; ac,’=1/2— 0, =1//2a; o0, =1

Product of the pulsewidth and it spatial frequency bandwidth is constant.

change variable to g

Applications of the Gaussian function: wave packet of individual photons,cross-sectional
irradiance distribution of a laser beam in TEM,, mode can be represented with Gaussian profile.
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Example of Generalized Fourier transform

Fourier transform of the Dicac delta function:

] N2 (22
S(x,y) = lim N2 N7+
N—0

FO0x,y)} = F{NZe N0 ] = [[7 N2 Nrting 12 b gyl

PHYS 258 Spring 2010 SJSU Eradat Fouriet intearals 41



Exercise

4.5)
a) Find 5(x* + x—2) using identity V
b) Find the Fourier series expansion of o(x-«)
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