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Superposition of waves 
  Superposition of waves is the common conceptual basis 

for some optical phenomena such as: 
 Polarization 
  Interference 
 Diffraction 

  What happens when two or more waves overlap in some 
region of space. 

  How the specific properties of each wave affects the 
ultimate form of the composite disturbance?  

  Can we recover the ingredients of a complex 
disturbance?    
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Linearity and superposition 
principle 

    

The scaler 3D wave equation ∂
2ψ (r,t)
∂r 2 = 1

V 2

∂2ψ (r,t)
∂t2  is a linear 

differential equation (all derivatives apper in first power). So any 

linear combination of its solutions ψ (r,t) = Ciψ i (r,t)
i=1

n

∑  is a solution. 

Superposition principle: resultant disturbance at any point in a

 medium is the algebraic sum of the separate constituent waves.

We focus only on linear systems and scalar functions for now.

At high intensity limits most systems are nonlinear. 
Example: Inensity of a typical focused laser beam =~ 1010  W / cm2  
compared to sun light on earth ~ 10 W / cm2. 
Electric field of the laser beam can trigger nonlinear phenomena. 
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Superposition of two waves   
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Phase difference and interference 
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Addition of two waves with same 
frequency 
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Two waves with path difference   

Amplitude is a function of path difference 
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Exercise  
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Phasors and complex number 
representation 
  Each harmonic function is shown as a rotating vector 

(phasor)  
  projection of the phasor on  the x axis is the  

instantaneous value of the function, 
  length of the phasor is the maximum amplitude 
  angle of the phasor with the positive x direction is the 

phase of the wave.   
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Example of superposition using phasors 
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Superposition of many waves  

   

Superposition of any number of coherent harmonic waves with a 
given frequency, ω  and traveling in the same direction leads to a 
harmonic wave of that same frequency.

E = E0i cos(α i ±ωt)
i=1

N

∑ = E0 cos(α ±ωt)

E0
2 = E0i

2 + 2 E0i E0 j cos(α i −α j )   and    tanα =
E0i sinα ii=1

N∑
E0i cosα ii=1

N∑i=1

N

∑
j> i

N

∑
i=1

n

∑

α i = −(kx + ε i ) and α j = −(kx + ε j ) 

For coherent sources α i = α j  and E0
2 = E0i

2 + 2 E0i E0 j
i=1

N

∑
j> i

N

∑
i=1

N

∑ = E0i
i=1

N

∑⎛⎝⎜
⎞
⎠⎟

2

For incoherent sources (random phases) the second term is zero.

Flux density for N  equal-amplitude emmiters: E0
2( )

incoh
= NE01

2 ; E0
2( )

coh
= NE0i( )2
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Exercise 
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Addition of waves:  
different frequencies I 
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Addition of waves:  
different frequencies II 

   

E = 2E01 cos kmx −ωmt⎡⎣ ⎤⎦ × cos kx −ωt⎡
⎣

⎤
⎦  with the following definitions

Average angular frequency ≡ ω = ω1 +ω2( ) / 2

Average propagation number ≡ k = k1 +k2( ) / 2

Modulation angular frequency ≡ ωm = ω1 −ω2( ) / 2

Modulation propagation number ≡ km = k1 −k2( ) / 2

Time-varying modulation amplitude ≡ E0 (x,t) = 2E01 cos kmx −ωmt⎡⎣ ⎤⎦
Superimposed wavefunction:  E = E0 (x,t)cos kx −ωt⎡

⎣
⎤
⎦

For large ω  if ω1 ≈ω2  then ω >>ωm  we will have a slowly varying 
amplitude with a rapidly oscillating wave
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Irradiance of two superimposed 
waves with different frequencies 

   

E0
2 (x,t) = 4E01

2 cos2 kmx −ωmt⎡⎣ ⎤⎦ = 2E01
2 1+ cos 2kmx − 2ωmt( )⎡⎣ ⎤⎦

Beat frequency ≡ 2ωm =ω1 −ω2  or oscillation frquency 

of the E0
2 (x,t)

Amplitude, E0, oscilates at ωm, the modulation freuency 

Irradiance, E0
2, varies at 2ωm, twice the modulation frequency  

Two waves with different amplitudes produce beats with 

less contrast.
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Beats 
(4E 01)2 

2E01 
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Phase velocity of a wave 

PHYS 168 Spring 2012 SJSU Eradat Superposition 



18 

Group velocity 

   

In nondispersive media velocity of a wave is independent of its frequency.

For a single frequency wave there is one velocity and that is Vphase =
ω
k

When a vave is composed of different frequency elements, the resulting 
disturbance will travel with differnt velocity than phase velocity of its components.

E = 2E01 cos kmx −ωmt⎡⎣ ⎤⎦ × cos kx −ωt⎡
⎣

⎤
⎦  

Vphase =
ω
k

 velocity of a constant phase point on the high frequency wave

Vgroup =
ωm

km

= dω
dk

⎛
⎝⎜

⎞
⎠⎟ω

velocity of a constant amplitude point on the 

modulation envelope 

Vg  may be smaller, equal, or larger than Vp

To calculate the Vp  and Vg  we need the dispersion relation ω =ω (k)
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Dispersion relation 
  Phase velocity for a given frequency is 

slope of a line on the dispersion curve that 
connects that point to the origin or w/k.  

  Group velocity for that frequency is the 
slope of the dispersion curve at that point 
or dw/dk.  

  We also may have a gap in the dispersion 
relation for a frequency band. In that case 
the velocities are not defined because 
waves can not propagate 

k 

w	



k 

w	



k 
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Finite waves 
  Finite wave: any wave starts and ends in a certain time interval 
  Any finite wave can be viewed as a really long pulse 
  Any pulse is a result of superposition of numerous different frequency 

harmonic waves called Fourier components.  
  Wave packet is a localized pulse that is composed of many waves that 

cancel each other everywhere else but at a certain interval in space.  
  We need to study Fourier Analysis to understand actual waves, pulses, 

and wave packets.   
  Width of a wave packet is proportional to the range of km of the wave 

packet.  
  Since each component of the wave packet has different phase velocity 

in the medium,  through the relationship Vp=w/k, k of the components 
change in the dispersive media. 

  As a result km of the modulation disturbance changes  
  Consequently group velocity changes.  
  This results in change of the width of the wave packet.  
  So wave packets inside a medium may spread or become narrower.    
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