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Definition of the parameters

p :enrgy density inside the cavity( Joules | I )

g, : dielectric constant of the vacuum (8.85 X107 F/ m)

U,: magnetic permeability of Vacuum(47t x107H / m)

p, : energy per unit volume (density) at frequency v (J()ules /L )
p (V) : energy per unit volum per unit frequency at v(]oulesT / L3)

p(v): mode density per unit frequency atv (1 /L .energy)

N, : number of modes in a volume V bettween frequencies O and v

v

c, : ¢/ n speed of light in the media (L /T')
m, p,q : positive integers

a,b,d : cavity dimensions

(€) :avarage energy per mode

g(v): the lineshape function (T a probability function)

o (v):stimulated emission cross section (Lz)



Introduction

e Focus on interaction of radiation with atoms and
ions that are weakly interacting with their

surrounding.

e Gas phase or impurity ions in an ionic crystal (or
doped ions)

e Simplifying assumptions: Limit the interaction
radiation with only
— active material (not the host)
— dilute medium (no interaction between the dopants)
— low intensity radiation (linear optics)



Summary of Blackbody Radiation
Theory

Blackbody radiation 1s very important for understanding of
radiation in general and lasers in particular.

For a cavity at thermal equilibrium rate of emission and absorption
of radiation has to be equal.

Energy dinsity inside the cavity:

1 1
=(—€eE’) +{—uH’
g <2 > <2“ >

€ : dielectric constant
U : magnetic permeability
The time average is over a cycle

of radiation field.




Modes of a rectangular cavity

Starting from the the EM (Maxwell) wave equation
1 O°E B
¢’ ot

and proper boundary condtions for a conducting

V’E - 0

rectangular cavity (E X n = 0) one can show
that p(v) the number of cavity oscillation modes
per unit volume and per unit frequency range is:

LN s
V dv o

n

p(v)



Rectangular cavity with perfectly
conducting walls at temperature T

(Svelto)
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Modes of a rectangular cavity

1 O°E
The E-field must satisfy the wave equation: V’E - — 52
c, ot

Boundary condtion for the E-field at each wall: Exn=0

=0

where n is the unit vector perpendicular to the wall. This means

tangantial components of the E at the walls of a conductor vanish.
Assume E(x,y,z,t) = space part X time part = u(x,y,z) E(t)
Viu=-k*u ) «u(x,y,z) the Helmholtz equation

d°E f
e = —(cnkz)E

«— E(t)=E, cos(wt + ¢) where ® = c k

.

E(x,y,z,t) = u(x,y,z) E, cos(wt + ¢) = Eju(x,y,z) e’ "
This soution corresponds to standing wave inside the cavity.
Amplitude of the oscillations at a given point of cavity is constant.

These solutions are known as EM modes of the cavity.



Meaning of a mode

Possible solutions of the wave equation

Think about modes of vibrations of a taut
string

Energy of the modes will vary the higher the
frequency the higher the energy

Number of modes: number of solutions



Modes of a rectangular cavity

Solving the Helmholtz equation V’u = —k*u with the BCExn=0

| . . . ’u, Jdu, Ju,
withu=ui+u j+u_ the Laplacian separates Viu, = —t—+t—
ox~  dy" 0z

U, =e, cosk xsink ysinkz

u,=e, sink _xcos kyy sink_ z ¢ A solution that satisfiels the BC at x,y,z =0

u, = e sinkxsink ycosk z
Condition for the solution to satisty the Helmholtz eq. for any e, e, ,e_:

ki +k +kI=k

with this condition the u; solutions should also satisfy the BC on the other

side of the walls x =a, y=5b, z= d. We get:

k = k pﬂ,k :% where m,p,qg=1,2,3,...

Y a b
m, p,q represent the number of nodes that the standing wave has along

4

the each direction of x, y, z



Modes of a rectangular cavity

Angular frequency of a mode w = ¢ k 1s determined by /,m,n

) ) ) 1/2
0, =ck=c,(R+2+k2) " =e, (m—”) + (p—”) + (ﬂj
a b d

But the mode will be completely determined once e, e, ,e_ are determined.

That 1s done by another ondition imposed by Maxwell equations.

ou. Ju, Ju, |
Vou=0-— x4 -2 4 55 ( . .

ox dy 0z e=ei+ej+ek
u, =e,cosk xsinkysinkz ¢ se-k=0 where{ k= ki+k,j+kk
u, = e, sink xcosk ysinkz and e | k
U, = e sink xsink ycoskz

J

once we fix m, p,q (or k) then the fact that e has to be perpendicular to k
fixes one of the components of the e so only two independet modes can

exist on the plane perpendicular to the K.



Number of resonant modes below a
certain frequency

A4 (Svelto)

* What is density of 4
modes in the cavity
2n/d
* Each point of the ST
- AT
lattice corresponds tc O pE ey
! | 7 /
two modes | AT 1}
r : a ',:'_Ti_/j/’ 2m/b Ty
I



Number of resonant modes below a
certain frequency

N, :number of resonant modes with frequency between O and v

N, :number of modes whose wavevetor Kk 1s between O and 27v /¢,
possible values given for k : vectors connecting the origin to the
nodal points of the 3D lattice shown.

Only the positve octant counts: 1/8

lVolume of the sphere centered at origin and radius k

N, = modes per k 8

volume of the unit cell (E ,E ,Ej

a b d




Number of modes per unit volume per

unit frequency rar;ge

3
lin 2iv 2n/d
v _083 Le, AT
_ / —l
Y m’ TS } 7 :
n/d J
abd (| ATrA A
I )._/___(_J__* '
p(v): number of modes per | 1 | i 1 ll
| b vy
unit volume and per unit lk ' __J‘,_’_ b 7" o “
frequency range. ' a4 (Svelto)
(v)= 1dN  8nv’ e
P V dv c)

n

note: do not worry about n and n, on pei(gxe 1’77 of Verdeyene at this point.

Assume there 1s only one index of refraction and that is n.



Average energy contained in a mode

Assume the cavity walls are kept at constant temperature 7.
According to Boltzman's statistics probability that the energy

of a given mode lies between E and E + dE 1s:
dp =Ce """ dE

C is a constant that can be calculateed from J:o Ce P'8T JE =1
| Edp | Ee*'"dE
oo oo B
J-o dp Jo ¢ dk

Note : average energy content of a mode (E ) only dependson T.

(E)

Exercise : calculate (E) and C



Modes of a rectangular cavity and the
Rayleigh-Jeans radiation formula

Calculate the spectral energy distribution using Boltzman statistics
p, = p(V)(E)

p(v): number of modes per unit volume per unit frequency range

(E) :average energy contained in each mode (we need to find this)

(v)= 1dN  8mv* |
P V dv ¢t
<E> = kT )

3

n

8v’
p, = ( " ]kBT < The Rayleigh - Jeans radiation formula

What is wrong with it?



Planck’s hypothesis
The energy 1n a given mode of a cavity could not have any
arbitrary value between 0 and <. The allowed values of this
energy should be integral multiples of a fundamental
quantity, proportional to the frequency of the mode.
In other words energy of a mode could be written as:
g, =nhv n=172,3,..
where n 1s a positive integer and /4 1s the Planck’s constant.
h=663x10""j.s
This implies that energy exchange between the cavity and

its walls must involve a discrete amount of energy hv



Average energy of a cavity mode using
Planck’s hypothesis
_ z:nhVe—nhv/kBT hy

0
hv

1+

B

compatible with the classical limit at low frequency range.

(&)

For hv < k,T, (€)= =k, T

Planck's formula for radiation energy density:

Stv:  hy

pv — p(V)<8> = C3 th/kBT _1

n

in agreement with experimental results. What if v — oo ?



Spectral energy distribution vs.
frequency for two different Ts

Stv:  hv

3L p,=p(VI(E)= 2 ik _q

T =3000K




Uncertainty principle, harmonic oscillator

For a mechanical oscilator total energy is

1 1 p?
E:Ekqi-k—px

2 m
oscillation occurs because potential energy, is

periodically transformed into kinetic energy.

Energy of a given oscillator mode is quantized
1
E = 5 hv + nhv

zero point energy can not be zero because that
requires both p_ and g, energy be zero which
1s not allowed by uncertainty principle.

The canonical pair that cannot be measured

simultaneously with arbitrary precision
Ap Aq 2H/2



Planck's Hypothesis and Field

Quantization
1900 Planck's hypothesis quantization of EM radiation E = nhv

1904 Einstein used it to explain the photoelectric effect

1927 Dirac's complete justification of quantization of EM radiation

by Quantum Field Theory

A mode of the cavity, characterized by a standing EM wave pattern,
and its resonance frequency of v.

Energy density of the mode: p = <%8E 2> + <% uH 2>

Energy of the mode: E = j pdV (V volume of the cavity)
E (r,t) & H (r,t): transverse components of the E & M fields



Uncertainty principle, harmonic oscillator
& quantization of the EM radiation

For a mechanical oscilator total energy is

m
oscillation occurs because potential energy, is

periodically transformed into kinetic energy.

Energy of a given oscillator mode is quantized
1
E= Ehv + nhv

zero point energy can not be zero because that
requires both p_ and ¢, energy be zero which
is not allowed by uncertainty principle.

The canonical pair that cannot be measured

simultaneously with arbitrary precision
Ap Aq. 21/2

In the electromagnetic oscillator represented
by the cavity mode, oscillation occures
because the energy is periodically transformed

between electric and magnetic fields.
B 1 2
E= j55<Ex VdV + j5u<Hy Vv
Energy of a given cavity mode is quantized
1
E= 5 hv + nhv

zero point energy can not be zero because that
requires both E and M energy be zero which is
not allowed by uncertainty principle.

The canonical pair that cannot be measured
simultaneously with arbitrary precision are

E, (r,r) and H (r,z)



2/9/12

Energy leve

1
E=—hv+nhv
2
w =21V
h
h=—
2T
1
E = Eha)-Fl’lh(l)
n=0,1,2,3,...

Is of a cavity mode

]
hv
!
hv
Zero point
energy hv/2

(Svelto)
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Average number of optical photons per
mode at room temperature in a cavity

<¢)> ,the avaeage number of photons for each mode is:

(6) = Eofamode (E) 1

o oV ksT _q

 Eofa photon  hv
v = 4 x 10" Hz (optical frequencies)
X hv = 1eV
h=6632%x10""j.s
T = 300K (room temperature)
k,=8.6173324(78)x107eV /K

Conclusion: hv>>k T(energy of an atom at T)

}kT =0.025¢eV

Energy needed to excite a mode 1n optical freq.s>>kinetic

energy of an atom at room temperature

— —4 .
(p)=e ™" =™ =0 no chance of laser actioon at room T



Spontaneous Emission: light from the
sun or from any ordinary lamps

e Semiclassical approach (fails to describe the
phenomenon of spontaneous emission in a correct

way)

— atoms are treated as quantized (i.e. treated according to
guantum mechanics)

— the fields are treated classically (i.e. treated through
Maxwell’s equations).

e Full guantum theory (correctly describe the
phenomenon)
— Atoms are quantized by quantum mechanics and
— The fields are quantized by quantum field theory.

* Einstein thermodynamic treatment (we will cover this
one)



Einstein thermodynamics treatment

Properly and elegantly explains both spontaneous and
stimulated transitions

Material is placed in a blackbody cavity with its walls at
constant temperature T

At thermal equilibrium the EM energy density with a

spectral distribution ( 0,) will be established and the T
material is immersed in this radiation.
The material will experience

— absorption

— stimulated emission

— spontaneous emission.

Since there is thermal equilibrium number of transitions

from level 2 to 1 is equal to the number of transitions from
level 1 to 2




Probability of Spontaneous Emission

N :number of atoms or molecules per unit volume at time
t that are at a given energy level.

N, & N, :population of levels 1 and 2 at t

Probability of spontaneous emission:

d N d
( sz :_A21N2:_—2 and ( Nz) =—£
at ), T dt ) T

A,, : the Einstein A coefficient (positive) obtained by

thermodynnamics considerations

T, =1/ A, : the spontaneous emission (radiative lifetime)

The numerical values depend on the particular transition

T . 1s the non-radiative lifetime

nr



(dN, )
\ dt )
(dN, )

\ dt )

St

Probability of
stimulated emission and absorption

Probability of stimulatd emission and absorption:

= _lesz(V) =

= +BlzN1p(V) -~

abs

(dN, )
\ dt )
(dN, )

\ dt )

st

abs

B,, : the rate of stimulated emission from 2 — 1.

B,, : the rate of (stimulated) absorption from 1 — 2

The numerical values of Bs depend on the particular transition

and photon flux (photones per area).

Mayjic of the stimulated emission:

The new photon has the same frequency, polarization, direction,

and phase as the stimulating photon.



Probability of transitions between
degenerate and non-degenerate states

Probability of stimulatd emission and absorption:

dN dN
( dtzj =-B, N,=-0,F and ( dtlj =—-B,N,=-0,F

a

It was shown by Enistein at early 20th century that :

For trasition between non - degenerate states: B,, = B,,

For trasition between degenerate states: g,B,, = g,B,,

g, and g, : degeneracy of levels 1 and 2.

For equal photon flux F: g,0,, = g,0,,

0,, and 0, are the emission and absorption cross sections.

In sammary we can say each stimulated emission process creates

a photon and each absorption process anihilates a photon



Absorption and Stimulated Emission

At thermodynamic equilibrium each emission must be balanced

by an absorption process.
N, & N, equilibrium populations of levels 1 and 2
dN

. =—A, N, + BlZNlp(V) — lesz(V) ==

dt radiative

AN, + lesz(V) = Bllep(V)

dN,
dt

=0

rdiative

SN &e—hv/kBT _ Blzp(v)

81 A, + 321p(v)

2 _ & o IksT
N, g
g, (or g,) are the number of ways an atom can have the energy E,(or E,)

Using Boltzman stat.

For a simple atom g = 2J +1 whre J is the total angular momentum
quantum number.

A, (82 /81)e_hkaT
B, - B, (82 /81)e_hWkBT

Solve for p(v): p(v)=



Absorption and Stimulated Emission

A, 1 8nv:  hv
plv)= & plv)= "
( ) B, B)s oMVkT k( ) ij e"'ke! —1}
le 8> Planck's BBR formula

o /
4

Einstein's radiation formula at thermal equilibrium

To make this to look like Planck's fromula, Einstein required:

the probability of absorption and SE for the atoms in the cavity

(B,8 =B, g,
due to BBR are equal. A,  8zn’hv

3
\ B,, C

2

; > Einstein's conditions

These conditions show that all three processes are related.
We have to find A & Bs to complete the solution of the problem.
Rate of transitions depend on the atomic structure but other

factors such as collisions, lattice vibrations, etc. come to play.



Atomic and molecular line shapes

So far we have assumed atomic lines are infinitely sharp,
energy levels are exactly defined and the emitted or absorbed
photon has a unique frequency defined by the difference

between the energy levels involved in the transition: Before After

T E2 — El E, : —e—E,
0 h Incident :
... . . . .. hv' |
This 1s in conflict with uncertainty principle. . 4iation |
There has to be a finite linewidth. B, — l E,
In an unsumble of atoms there are also many (a) Stimulated absorption
other reasons for the atomic lines to be broader. (Svelto)

BBR has a very broad emission spectrum.
The systems we deal with will usually have narrow line widths

Av <<v,, where v, 1s the central frequency.



Evolution of the energy level diagram

5 —  [g(v-v,) AV

x— )
? 0.8+

V<V,

V>V, |V,

1 > . N
-2 -1 0 1 2 .rv-vo]

L Av,/2
0 > (Svelto)
Zero width lines  Broadened levels Spectral line shape
Example: a Lorentzian
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Definition of g(v) the lineshape

g(v')dv' = probability thgtlé Qp%lga%)egusly emitted photon

will appear at a frequency between V' and v'+ dVv'
j:g (v')dv'=1 (photon has to have some frequency)
g(v,)=1/Av

v, =V,, 1sfrequency of the peak

Av 1s the FWHM of the emission spectra

Broadeneing of both upper and lower states contribute to g(Vv)
Spectral distribution of the emitted power :

{1(v)dv }{surface area} = {hvA, N,g(v)dv }{volume of surface}

we can measure g(Vv)dv with very narrow band-pass instruments.

Fabry-Perot cavities are good for this and will cover them later.



Other Definitions of g(v)

g(v')dv' = relative strength of absorption of radiation in the

inteval of v' and v'+ dv' by atoms in state 1

g(v')dv' = relative strength of stimulation by radiation in the

inteval of V' and v'+dVv' in inducing the atoms in state 2 to

release their internal energy

Now we need to modify the rate quations to account for the lineshape

dN,
dt

dN,
dt

radiative

radiative

=—A,N, + Bllep(V) - lesz(V)

=—A, N,

o Bz1N2

® OO

J0

o

2(v)dv'+ BN, [ p(v)g(v)av:

p(v)g(v)av'



Photons in the cavity and line shape

dN, oo
=—A, N
dt 21772

radiative

g(V')dV' +B,N, J‘:p(\/')g(v')dV'

JO

® OO

—B,N,| p(v')g(v)dv'

p(v') is the radiation hitting the atoms (pump or cavity feedback )

J0

Some special cases:
1) If g(v') is much narrower than p(v') or radiation hitting the

atoms is very broad we can evaluate p(v') at v'=v and pull it out

of the integral and with J )dv' =1 we get the original formula
for dN, / dt :
dN, p(v)

=—A,N, + Bllep(V) - lesz(V)

radiative 8 (V)

dt



Photons in the cavity and line shape

2) Other more common case in lasers : p(v) is much narrower than

g(v) then we assume all of the photons have single frequency (pumping

with a laser or selecting the cavity with a sharp frequency band.

p(v')=p,6(v'=v) then J.:pvé(v'— v)g(v')dv'=p,g(v)

dN - )
dt2 :_A21N2~0 g(V')dv'+Bl2N1j0 P(V')g(v')dv'
radiative
) g(v)
_821N2~0 P(V')g(v')dv' o(v)
aN Transition only
dtz =—A,N, = B, N,p,g(v) + B,N,p,g(v) happens here
radiative

for the case of very narrow p(v). We will use the Einstein conditions

to simplify this rate and define the stimulated emission cross section.



Stimulated emission cross section

We express the radiation density as a function of intentity of radiation:

T) L
Recall from E&M: p, (é) = L(J/T)/ > P, = 1
L c, L/T C

n

3 2
C A, cA, A,

Einstein's conditions: B,, = &le & B, =

81 Stnv: hv  8mn’ hv

dN, cAl A g A2 A

__AN. - o Ty v)+ & 01 v
dt radiative e 871-”3 hv 2pvg( ) g2 872:”3 hv 1pvg( )
N A I, g
dN ]

ol v,

dt radiative VvV gl

Ay
87Tn

o (v):stimulated emission cross sction (L*) = o(v)= 4, = g(v)



Summary of rate equation for the

narrow band radiation in the cavity
Condition: FWHM(p(v)) << FWHM (g(v))

dN I
: :_Alez_G(V)_V N2_&N1
dt radiative hv 81
with o (V) the stimulated emission cross sction defined as
)LZ
_ 0
o(v)= Ay 2 g(v)

o (v) has dimension of the area or L’
Conclusion: the lineshape is the most important parameter

in describing the interaction of the EM radiation with atoms.



Amplification by an atomic system

* Goal: to describe the process of amplification
(or attenuation) of EM energy by its
interaction with atoms.

* Assumptions:

— Population density of the atoms in various levels
are not in thermal equilibrium

— Populations are altered by external sources
pumping (increases N,) and various losses
(decreases photon density in the system).

— Spontaneous emission contributes to noise.



A Gedanken (thought) Experiment

N,

Polarized EM radiation

with intensity 7,

2/9/12

Active
material
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Polarizer
Rejects half

of the SpE to
minimize noise

Av
Bandpass filter v & B

LRI

Detector
SpE &StE

SRt

]
15

s S o
REARHEN

s T

ield of view( FOV)
limited to match
incoming beam
rich in StE,

Only fraction of

SpE exists
41



Photon bookkeeping

2)power contributed by 5)If the photon is
each atom determined 3)Effect of the 4)Effect of in the solid angle 6)Number
1)pakage by rate interaction lineshape in polarization determined of atoms in
of energy r 7 \ the process of rdiation by the FOV the process
— I — —— — —
Al,= +hv X B,—— x g(v) x 1 x 1 X N,Az
(c/n)
1 1%
—hv X B, x g(v) x 1 x 1 X N,Az
(c/n)
1 dQ
+hv X A, Av x gv) x = X — X N,z
2 4r
Al dl hv 1 749)
> — —Y=|——(B,N,—B,N,)g(v)|I,+—=| hvA, N,g(v)Av—
Az dz |c/n 2 41
A term due to absorptioﬁf and stimulated emission Noise not dep;,;dent of the I,

For now we neglect this term



Small signal gain coefficient

Using the Einstein conditions between the rate coefficients
B,g, =B, g, and A, /B, =8nn’hv’ / ¢’
we manupulate the change in intensity /, by thickness:

dl A2 A
B ) | M- 2 ) o,
Z 37Tn g

gain coefficient

By definition the y (v )is called the gain coefficient.

Small signal gain v, (v): is referred to the gain coefficient
under the a condition that the /, does not change population
density of the states 1 & 2.

All lasers start in small signal regime but soon [, starts affecting

the N, and N, . State populations become functions of I .



Condition for amplification and gain

dl A* A
- = |:A218 2g<V)} [Nz_gle}Iv: ’}/(V) Iv
mn

dz g =
L - L - gain coefficient
. .V . ) v .
Stimulated emission cross section For increase of I, with
Always a positive term distance, we need this

term to be positive

' dl
'}/(V)>Olf[N2_&N1]>O %N2>&Nl and —~ > 0
g 1 . Yg 1 . dZ .
Positive gain or Amplification
amplification

The gain condition is contrary to Boltzman statistics
N hy .., N, N dl

2 _ 82 ] for which —2 < 21 and Y <0
N, g & & dz_

. J/
absorption or extinction

. J

Absorption



Stimulated emission cross section

dl A’ g A
d :|:A21 712 g(V):| |:N2_g_le:| I, = Y(V) I,

. vilw - gain coefficient

e e
Stimulated emission Effect of inversion density

Cross section
12
g(v)

8Tn’  om—s

\ P ~ Effect of the
effect of the atom environment

G(VO) =10"cm?

&Nl =10"cm’
81 )

The absorption cross section is related to the stimulated emission

G(V) = Ay

N

N >}/(v) =0.0lcm™ ora gain of 1% per cm
L -

cross section by: o, (V)= ( g,/ gl)Gm.m (v)



Solving for the intensity

We can find the intensity by solving this simple linear differential eq.
dI
c=y(v)1, = 1,(z)=1,(0)e""

1,(2)=G,(v)I,(0)

,(v):Smal 31gna1 power gain of an amplifier length d

Gy (
Gy(v)=e
A’ )
)= (N S et
y(v) is frequency dependent and G, (v) more so due to the exponent.

This 1s a narrow band amplifier and we will put this in a feedback
loop to gain oscillation.



Line Broadening Mechanisms
Homogeneous vs inhomogeneous broadening

* Homogeneous line shape:
— All molecules behave in the same way

— Lorentz line shape

 Examples are:

— Pressure broadening (collision)
— Natural lifetime broadening
— Transit time broadening

* Heissenberg’s uncertainty principle



Line Broadening Mechanisms
Homogeneous vs. inhomogeneous broadening

* Inhomogeneous line shape:

* All molecules behave differently (distribution)
— Gaussian line shape

 Examples are:

— Doppler broadening
— Power broadening



Lifetime broadening
A homogeneous mechanism

For simplicity we will only consider - > .
the symmetric case of the level L
broadening with Lorentzian V<V,

. e ge E, = hv,
distribution.

AE
F, (E ) = > : > Vi>Vy
2m| (E=E,) +(AE, /2) |
4 Sl

g(hv) : the lineshape is the joint >

probability of all posssible transitions.

2(w)= [ P (E) R (EE
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Lifetime broadening
A homogeneous mechanism

N
N
— AEl
ALE)= 27| (E-E,) +(AE, /2) |
P (E)= =2

21| (E-E,) +(AE, /2) |

with <

with <

P.(E) : Probability of a state being in E, to E, + dE, interval.
P,(E)dE : # of atoms with energy E in the interval around E,
P, (E)dE :# of atoms with energy E in the interval around E,

r AE, = FWHM of P,(E)
AE, << (E, - E,)

( AE, = FWHM of P,(E)

AE, << (E, - E,)

AE, , << (E2 — El) Means the levels are well separated

Spontaneous emission of a photon hv will happen when there exists a

combination of levels around E, and E, that can allow the radiation.



Lifetime broadening: Change of
variables & finding lineshape g(hv)

g(hv)=|_P(E)R(EME

Forband 1: E=x+E, and a=AE, /2
Forband 2: E=x+E, +hv and b=AE, /2

And we define: § = hv -(E, — E, )
AE, 1 AE, 1

g(hv):"‘“i 27 [)c2+azl>< 27 [(x+5)2+b2} -

J

Evaluate the integral (page 192 Verdeyene)
1 AE, + AE
g(hV) = 22 : 2
2% | hv—(E,—E,) | +[(AE, + AE,)/2 |




Lifetime broadening: g(hv)

1 AE, + AE,
g(hv) = 2 2
2x | hv—(E,-E,) | +|(AE, + AE,)/2]
Using E = hv and relation of the energy levels to the
lifetimes: AE.At =7 (AEi-’L'l. = h) and rearranging the g(v)

1 Av . 1 |1 1
g(v)= > —= with Av= { + }
27| (v, - v) +(Av/2)' | 2 (T, T,

Why we have limitted lifetime for the energy levels?

Energy transfer between the atoms or quenching collisions exists.

» N 1
{ZAZJ} — k,N, £—=2 where — =) A,

Jj<2 7, Trad j<2

quenching

rad



Lifetime broadening: g(hv)
{2/&2]} — k,N, s M where L:EAM

— T T ;
j<2 quenching 2 rad j<2

rad

Ratio of decay from 2 — 1 B A,

AN

Sum of all decays from 2 ach ZAz ik,

The best we can do 1s to eleiminate the quenching so k, =0

The broadening ratio=

Due to ever-present nature of the various radiative processes,

a non - zero linewidth allways exist that is so called "natural linewidth".
1 1 ({1 1
Av, =—{A,+A}= +
2 2w | T, T,

Other effects on line broadening are much more severe than the

natural linewidth so we don't care much about it in practice.



Collision broadening



Example for collision broadening

Example 2.2. Collision broadening of a He-Ne laser As a first example of collision broadening, we
consider the case of a transition for an atom, or ion, in a gas at pressure p. An estimate of . is, in this
case, given by 7. = [/vy, where [ is the mean free path of the atom in the gas and vy, is its average thermal
velocity. Since v,, = (3kT/M)'/? where M is the atomic mass and taking [ to be given by the expression
resulting from the hard-sphere model of a gas, we obtain

2\ % 1 (MkT)V?
tc:() (MKT)

3 87  pa’

3 (2.5.12)

where a is the radius of the atom and p is the gas pressure. For a gas of Neon atoms at room temper-
ature and at a pressure p = 0.5 Torr (typical pressure in a He-Ne gas laser) using Eq. (2.5.12) with
a = 0.1nm and 7. = 0.5 us, we find from Eq. (2.5.11) that Av, = 0.64 MHz. Note that 7. is inversely
proportional, and hence Avg directly proportional, to p. As a rough “rule of thumb” we can say that, for
any atom, collisions in a gas contribute to the line broadening by an amount (Av,/p) = 1 MHz/Torr, com-
parable to that shown in the example of Ne atoms. Note also that, during the collision time 7, the number
of cycles of the e.m. wave is equal to m = vt For a wave whose wavelength falls in the middle of the vis-
ible range we have v = 5 x 10'* Hz and thus the number of cycles is 5 x 10%. This emphasizes the fact that
Fig. 2.9 is not to scale since the number of cycles in the time 7 is much larger than suggested in the figure.
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Example 2.3. Linewidth of Ruby and Nd:YAG As a third example of collision broadening, we will con-
sider an impurity ion in an ionic crystal. In this case the collisions of the ion occur with the lattice
phonons. Since the number of phonons in a given lattice vibration is a strong function of the lattice
temperature, we expect the transition linewidth to show a strong dependence on temperature. As a rep-
resentative example, Fig. 2.10 shows the linewidth versus temperature for both Nd:YAG and ruby, the
linewidth being expressed in wavenumbers [cm™'], a quantity widely used by spectroscopists rather than

actual frequency.* At 300K the laser transition linewidths are seen to be Avy = 4cm™' =~ 120 GHz for
Nd:YAG and Avy = 11cm™! = 330 GHz for ruby.
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Example 2.4. Natural linewidth of an allowed transition As a representative example we can find an
order of magnitude estimate for Av,,, for an electric-dipole allowed transition. Assuming |@| = ea with
a = 0.1nm and A = 500nm (green light) we already obtained in example 2.1 that 7, = 10ns. From
Eq. (2.5.13) we then get Av,,, = 16 MHz. Note that Av,,, just as A = 1/, is expected to increase
with frequency as v}. Therefore the natural linewidth increases very rapidly for transitions at shorter
wavelengths (down to the UV or X-ray region).
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Example 2.5. Linewidth of a Nd:glass laser As a rep-

resentative example we consider the case of Nd** ions
doped into a silicate glass. In this case, due to glass
inhomogeneities, the linewidth of the laser transition at
A = 1.05pum is Avy = 5.4THz ie. it is about 40
times broader than that of Nd: YAG at room temperature

(see Example 2.3). It should be noted that these inhomo-
geneities are an unavoidable feature of the glass state.
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Inhomogeneous broadening

* Some of the shifts to the characteristic frequency of the
atoms do not affect all of them in the same way such as

— Isotope effect (same atomic number different atomic mass)
— Doppler effect (same mass but different velocities)

— Nuclear spin,

* Hyperfine splitting separation of the lines due to coupling of angular
momentum

» Zeeman splitting of the lines due to external magnetic field
» Stark shift, due to interaction of the levels with local lattice field

e Most of the time combination of these effects create

asymmetric lineshapes which make the math more
challenging.

* For example the 243.7 nm transition of the Hg atom is only
15 GHz due to combination of several effects.



Doppler broadening important in gas phase

due to variation in thermal velocities of the molecules
V,=V,| 1+— |—= Vv, —V goes into the lineshpe
C

v, : Emission frequency of atoms in their rest reference frame.

v, : Emission frequency of atoms in the lab reference frame.

V_: velocity of the atoms towards the observer

The homogeneous line width of those atoms with velocity V,
Av,

27Z'|:(V —V, =V, V. /¢) +(Av, / 2)1

g(V..v)=

Fraction of atoms moving in the z direction with velocity

aN (M O\ -
between V, and V. +dV, : = ( ) e T dv.
N 2nkT

g(v)= J._m g(VZ ,v)dWN integration over all the velocities



Doppler broadening important in gas

phase
12 RAA
g(v)=( M ) J_Z< Av, : e 2kBTdVZ
2nkT 2%[(v—v0—v0\/z/c) +(Av, /2) }
Ax

L(x—=x'
(=)= 2m| (x—x") +(Ax/2) ]

Vv

1/2 Mv;}
8(v):(2AZT) J 5(V vV, - Zj Zde(Vv )
n VAL
1 [ M jm e-éZfT(V;OVOJ

2nkT




Example Doppler broadening

Example 2.6. Doppler linewidth of a He-Ne laser Consider the Ne line at the wavelength A = 632.8 nm
(the red laser line of a He-Ne laser) and assume T = 300 K. Then from Eq. (2.5.18), using the appropriate
mass for Ne, we get Avy =~ 1.7GHz. A comparison of this value with those obtained for collision
broadening, see example 2.2, and natural broadening, see Example 2.4 (the transition is allowed by electric
dipole), shows that Doppler broadening is the predominant line broadening mechanism in this case.
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Comparison of the broadenings

TABLE 2.1. Typical magnitude of frequency broadening for the various line-broadening mechanisms

Type Gas Liquid Solid
Homogeneous Natural 1 kHz = 10 MHz Negligible Negligible
Collisions 5 < 10 MHz/Torr ~300cm™! -
Phonons - ~ ~10cm™!
Inhomogeneous Doppler 50MHz <+ 1GHz Negligible =
Local field - ~500cm ! 1+ 500cm™!
(Svelto)
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Cavity roundtrip
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