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Optics 

  Study of light  
 In wave optics or physical optics light is an 

electromagnetic wave.  Example phenomena: 
diffraction, interference,…  

 In geometrical optics light is a ray. Example: 
refraction, reflection, …    

 In quantum optics light is a particle. Example: 
absorption, emission, laser action, … 
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Wave 
  A self sustaining energy-carrying disturbance of 

a medium through which it propagates. 
 Longitudinal wave: the medium is displaced 

in the direction of motion of the wave. 
 Transverse wave: the medium is displaced in 

a direction perpendicular to that of the motion 
of the wave.  

  When a wave propagates, the disturbance 
advances, not the medium. That is why waves 
can propagate faster than the medium carrying 
them (Leonardo da Vinci). 
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Mathematical expression of a wave  
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Exercise   
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Note 

  One-dimensional (1D) wave: direction of 
propagation is a function of one space variable. 
Example: disturbance in a rope.   

  Two-dimensional (2D) wave: direction of 
propagation is a function of two space variables. 
Example: ripples in a pond (circular).  
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Wave equation 
  Maxwell showed that light is a transverse wave with electric and 

magnetic fields varying in directions perpendicular to the direction of 
propagation. It can be expressed by a second order differential 
equation.  

  In 1D, the wave equation is:  

  Ψ(x, t) is the wavefunction representing the disturbance as a function 
of   space and time. V is the speed of the disturbance. 

  This is a homogeneous equation means it does not contain Ψ  by 
itself; equivalent to lack of driving source.   

  Un-damped means it does not contain a first order time derivative of 
Ψ;  equivalent to lack of resistance. 

  It is a linear equation since all derivatives appear in first power.  
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Exercise  
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Answers 
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Waves in three dimension   
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Harmonic waves I 
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Harmonic waves II 
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Exercise 
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Phase of a wave  
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Phase velocity of a wave 
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Exercise 
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Complex numbers representation 
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Exercise 

Eradat sjsu s2010 



19 

Harmonic plane wave I 
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Harmonic plane wave II 
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Value of the plane wavefunction 
along the propagation direction 
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Harmonic spherical wave 
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Wavefront 

  Wavefront: a surface over which the phase of a wave is 
constant.  

  For plane waves the wavefronts are planar surfaces for 
which k.r=constant.  

  For spherical waves the wavefronts are concentric 
spheres centered at origin of the wave. 

  Homogeneous waves: the wavefunction is constant over 
the wavefront, i.e. amplitude is constant.  

  Inhomogeneous waves: the amplitude A of the 
wavefunction is not constant over the wavefrnt and is 
function of space A(r). 

  Example of an inhomogeneous wave function?  
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Exercise 
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Electromagnetic waves 

    

-  The harmonic wave equation can represent any type of 
disturbance with sinusoidal behavior.
-  Physical significance of the disturbance is different for different 

systems.
-  Maxwell showed that light is composed of electric and magnetic 
fields oscillating perpendicular to each other and propagating in 
the direction k, perpendicular to the plane of oscillations. 
-  For light waves the disturbance is the magnitude of time-varying 
electric or magnetic fields that are described with the following 

harmonic wavefunctions:    
E = E0e

i(k .r−ω t )

B = B0e
i(k .r−ω t )

⎧
⎨
⎪

⎩⎪
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Electric and magnetic fields 
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Before Maxwell 

     

Faraday's induction law: a time-varying magnetic field will have an 

electric field associated with it.  E ⋅
C∫  dl


= - ∂B

∂t
⋅ ds

A
∫∫

Gauss's law-electric: ΦE = E ⋅ ds = 1
ε0

ρ dV
V
∫∫∫ = Q

ε0
A∫∫ ,  

When there are no sources or sinks of electric field within a region 
encompassed by a closed surface, the net flux through the surface = zero.
Gauss's law-magnetic: ΦM = B ⋅ ds = 0,  

A∫∫
There is no magnetic monopole or a single charge as a source for the M-field

Ampere's circuital law: B ⋅
C∫  dl


= µ J + ε ∂E

∂t
⎛
⎝⎜

⎞
⎠⎟
⋅ ds,  

A
∫∫ a time-varying 

E-field or charges in motion (electric current) will generate a B-field
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Maxwell equations; integral forms 
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Compact notation: good-looking, and 
cool equations 
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Maxwell equations; differential form 
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Constitutive relations 

    

H = Magnetic field;  B = Magnetic induction;  
E = Electric field;  D = Electric displacement; J = Current density;  
Constituitive relations are:     D = D(E,B);   H = H(E,B);   J = J(E,B) 
These relations may be nonliner or depend on the past (hysteresis). 

Linear response: the applied fields are small so they induce electric 

and magnetic polarizations proportional to the magnitude of the 
applied field (ferroelectric and ferromagnetic material are exceptions)
Dα = εαβ Eβ

β
∑ ;    Hα = µαβ

−1 Bαβ
β
∑

εαβ  is electric permitivity or dielectric tensor 

µαβ
−1  is inverse magnetic permitivity tensor
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Linear and nonlinear material (optics) 

    

At low electric fields every almost material is linear 
Dα = εαβ Eβ

β
∑ ;    Hα = µαβ

−1 Bαβ
β
∑

εαβ  is electric permitivity or dielectric tensor 

µαβ
−1  is inverse magnetic permitivity tensor

For material isotropic in space both ε  and µ  are 

diagonal and all elements are equal then:    
D=εE  and    H=µ -1B
At high enough fields every material is nonlinear 
Da = εαβ

(1) Eβ
β
∑ + εαβγ

(2) Eβ Eγ
β ,γ
∑ + ....      

for most of optical material µ = 1
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Electric fields in medium 

    

1) P polarization vector: P = ε0χE electric dipole moment per unit volume.

2) D displacement field: D = ε0E + P electric field within the material 

3) E internal electric field: E = D
ε0

− P
ε0

 and we have D = ε(E) E = ε0εr E( )E 

D and E lines begin and end on free charges or polarization cahrges. 
In absence of free charge field lines close on temselves 
(∇ ⋅E = ∇ ⋅D = 0). 
For homogeneous, linear, isotropic dielectrics P & E have same direction 

so D = εE,  where ε = ε0 (1+ χ), and Κe = εr = ε / ε0 = 1+ χ  

ε & εr  are the dielectric & relative dielectric( )constant or function. 

4) Ohm's law: electric field intensity determines the flow of cahrge in a 
conductor J = σE V = IR( ),  true for conductors at constant temperature.
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Constitutive relations: magnetic 
fields in a medium 
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Maxwell equations using the 
constitutive relations 

     

Good for vacuum            Good inside a material  

∇ × E = − ∂B
∂t

                  →∇× E = − ∂B
∂t

∇ ⋅E = ρ
ε

                        →∇⋅D = ρ

∇ × B = µ J + ε ∂E
∂t

⎛
⎝⎜

⎞
⎠⎟

      →∇× H = J + ∂D
∂t

∇ ⋅B = 0                         →∇⋅B = 0
With D = εE & B = µ−1H 
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The wave equation for the E and M 
components of the EM waves  

    

Maxwell equations in nonconducting vavuum (ρ = 0,J = 0,ε = ε0 ,µ = µ0 )

(1)  ∇ × E = − ∂B
∂t

,          (2)  ∇ × B = µ0ε0

∂E
∂t

(3)  ∇ ⋅B = 0,                 (4)  ∇ ⋅E = 0

Take curl of (1) and use (2) to eliminate B,  ∇ ×∇ × E = − ∂
∂t

(∇ × B),

∇ ×∇ × E = −µ0ε0

∂2E
∂t2 ,  ∇(∇ ⋅E) − ∇2E = −µ0ε0

∂2E
∂t2 , using (4) we get 

differential wave equation: ∇2E = µ0ε0

∂2E
∂t2 = 1

V2

∂2E
∂t2 ,  with V = 1

µ0ε0

= c

We can also show: ∇2B = µ0ε0

∂2B
∂t2 = 1

V2

∂2B
∂t2 ,    
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Exercise 
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Exercise 1.14 
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The electromagnetic spectrum 
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The index of refraction 

    

Velocity of light based on Maxwell's theoretical treatment in vacuum is 

c = 1
ε0µ0

 and in medium is V = 1
εµ

.

Absolute index of refraction defined as: n = c
V

= εµ
ε0µ0

= εrµr = Keµr . 

The E field of an EM wave polarizes the medium and the 
displacement field D = ε0E + P = ε0E + ε0χP = εE changes. 
The result is change in ε  and consequently in n and V ,  
speed of light in the medium. 
ε(ω ) and n(ω ) are functions of the frequency of the EM waves. 

Usually µ ≈ µ0  so n = ε
ε0

= εr = Ke ; 

Ke  or εr  is the complex dielectric function so n is not real anymore.
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Physical meaning of the index of 
refraction I 

    

Consider a general case where n is a complex number 
n = n '+ in". Consider the E component of a plane wave, 
E = E0e

i(k ⋅r−ω t )  
where k,  the propagation vector in medium is complex. 
k0  is propagation vector in vacuum. 

With V = ω
k

, the phase velocity, and k = ω
V

= ωn
c

E = E0 ye
i(kx−ω t ) = E0 ye

i( nω
c

x−ω t )
= E0 ye

i(
(n '+ in")ω

c
x−ω t )

= E0 ye
−

n"ω x
c e

iω ( n ' x
c

− t )
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Meaning of the index of refraction II 

    

E = E0 ye
−

n"ω x
c e

iω ( n ' x
c

− t )
 where e

−
n"ω x

c  is a real term 

and decays exponentially as wave propagates.

e
iω ( n ' x

c
− t )

 has a harmonic wave form and propagates 
without loss. This suggests that 
n",  the imaginary part of n is associated with absorption. 
n ',  the real part of n is associated with propagation.
In absence of n", the case in many dielectrics in the 

visible part of the EM spectrum, n is simply the ratio 
of the speeds in vacuum and in the medium, also called

absolute index of refraction: n = n ' = c
V

= ω
k0

k
ω

= k
k0

=
λ0

λ
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Frequency dependence of the 
index of refraction 

The wavelength dependence of n is  
stronger at short wavelengths or high  
frequencies. 
For most dielectrics the imaginary  
part of the n is negligible in the visible 
band 
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Exercise 
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Energy and momentum I 
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Energy and momentum II 
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Poynting’s Theorem 
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Exercise 
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Irradiance 

Eradat sjsu s2010 



50 

Exercise 
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Exercise   
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