Chapter 2
Matrix Methods in Paraxial Optics
Lecture Notes for PHYS 168 Lasers based on
Pedrotti3® & Verdeyen

Instructor: Nayer Eradat
Spring 2012

2/27/12 Eradat, SISU, Matrix Methods in Paraxial Optics

Matrix methods in paraxial optics

* Describing a single thick lens in terms of its
cardinal points.

* Describing a single optical element with a 2x2
matrix.

* Analysis of train of optical elements by
multiplication of 2x2 matrices describing each
element.

e Computer ray-tracing methods, a more
systematic approach
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Cardinal points and cardinal planes

* Imaging properties of a thick lens can be deduced
from the six cardinal points on its axis. Planes
normal to the axis at the cardinal points are
called cardinal planes. They are:

First and second set of focal points and focal
planes.

First and second set of principal points and
principal planes.

First and second set of nodal points and nodal
planes.
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Focal points and focal planes

* Object focal plane: loci of the object points when image is at
infinity

* Image focal plane: loci of the image points when object is at
infinity

* Image and object focal points: intersection of the object and
image focal planes with the optical axis.
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Principal points and principal planes
* The rays determining the focal points change direction at their

intersection with the principal planes.

* Principal points are at the intersection of the principal planes
the optical axis.
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Nodal points and nodal planes

* Nodal points of a thick lens or any optical system permit
correction to the ray that aims the center of the lens.

* Any ray that aims the first nodal point emerges from the
second nodal point undeviated but slightly displaced.
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Cardinal points and cardinal planes
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* All the distances that are directed to the left are negative (-)

* All the distances that are directed to the right are positive (+)
¢ Notice that focal distances are not measured from the vertices

2/27/12 Matrix Methods in Paraxial Optics

Basic equations for the thick lens

Location of the principal planes:
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Basic equations for the thick lens

For an ordinary thin lensinair: n=n'=landr=v, s=w
we arive at the usual thin lens equations:
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The sign convention is as usual: v—> L
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real + and virtual — as long as the distances are measured

relative to their corresponding principal planes.

2/27/12 Matrix Methods in Paraxial Optics 9

The matrix methods in paraxial optics

For optical systems with many elements we use a systematic
(programmable) approach called matrix method.

For each ray as it progresses through the optical system we follow
two parameters .

A ray is defined by its height y and its angle a with the optical axis.

We can express Y, and ay,,, in terms of y; and a, multiplied by

the transfer matrix of the system.
5 6

T
Y7 M7
Xy —> 7
.
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The Ray Transfer Matrix (RTM)

.e::\: gl_
A

1T % __
rout _ A B r;n 0:\ Y1
- Vol — >
' C D r'

out

7 Y Optical axis

%/—/
Ray Transfer Matrix
(RTM)

r =y the beam height from the optical axis.
' = o the beam angle with the optical axis.
One can show based on a thermodynamics arguments that

n.
in

det(RTM) = AD-BC =

out
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The general Ray-transfer matrix

Generalizing the matrix relationship for any number of

translating, reflecting, refracting surfaces:

2771
o, @,

M is the RTM of the optical system.

Some rules :

Y.
{ f]:M{yO} where M =M M, ---M,M

Matrix multiplication is non-comutative: M, M, # M, M,
Matrix multiplication is ssociative: (M3M2)M1 =M, (Mle)
Order of operations from first the ray sees to the las one is
right to left.
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RTM of translation

Simple tanslation of a ray in a homogeneous medium.
Translation from point O to 1 with paraxial approximation™*:
o =0o,andy =y + Ltana, =y, + Lo,

We rewrite the equations:

ylz(l)yo+(L)0‘o N RN N S A R
a,=(0)y,+(1)e, | | 01 ||e,
\_W__J -
RTM for translation l,e::\:éﬁ_
Combination of two translations: A
,
0 e=""1- 0 __
1 Ll + L2 A Y1
Y0 le—— L —> . .
0 1 Y y  Optical axis

*Paraxial approxiamation: tano = sin = o(rad)
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RTM of Refraction

Refraction of a ray at a spherical interface:

Ray coordinates before refraction (y,a)

Ray coordinates after refraction (y',(x')

Optical axis

y v
0'=0'-¢=0'-2 andx=6—¢=6—=
o 7 o o 2

Paraxial form of Snell's law: n6 = n'0’'

a‘z(n]e_yz(n][a-‘ry]_y X
n' R n' R R

©2007 Pearson Prentice Hall, Inc.

The approximate linear equations become:

y'=(1)y+(0)e ' | 0
, L) n n %{ y,]: 1 n o {y}
o = E ; -1 y + ; o o R\ n' n' o
Ray-transfer matrix for refraction

What happens if R — c0? Yol= 10 Y
o' 0 n/n' o
—

Refraction at a planar interface
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RTM of reflection

Refraction of a ray at a spherical interface:

Ray coordinates before refraction (y,Oc)
Ray coordinates after refraction (y',a‘)

Goal: connect (y',(x') to (y,oc) by a ray transfer matrix

y y
'=0'-¢=0'-—-and x=0+p=0+—
o 0] and o )

To eliminate 6 and 6' we use 0 = 0' we get

g Y _ 2y
OC—Q—E—OC—? 1%
The desired equations become:

y'= (1)y+(0)a

avz[_gﬁ(l)a *H }Z —12 (1) { }

©2007 Pearson Prentice Hall, Inc.
| —
RTM for reflection
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Sign conventior
for the angles

The thick lens and thin lens matrices |

Goal: transfer matrix of a thick lens with different materials on sides.
The operation consists of two refractions and one translation.

The radii of curvature are (+) in this example.

Vi } =M, {yo } for the first reflection

_al aO
Y2 =M, yl for the translation - Y3 = MM, M, Yo
_062 061 053 — OCO

M: Transfer matrix
of the entire lens

&, *,

Y3 } = M3 {yz } for the second reflectiont

Matrices operate on the ray in the same order in which the optical actins
influense the ray.
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The thick lens RTM

<—
The RTM for a thick lens: n & n'
M - M3 MZM B R2TR1 © 2007 Pearson Rrentice Hall, Inc.
| 0 | 0
M= . 1 ¢
=| n,—n" n n—n, n
Lo -
n'R, n nR n

R represents a refraction and T represents a tsranslation matrix
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The thin lens RTM

2

For a thin lens (t -

“1/f 1

M = ! 0] withi=

0
n
n
) in one environment (n
0
n

1 0 1
' 1 ¢
M=| n,—n n, { 0 1 } n—n,
n'R n' nR

L

1

n R n,

n') the M becomes:

RTM for a thin lens
2/27/12

lensmaker's formula

Matrix Methods in Paraxial Optics
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TABLE 181 SUMMARY OF SOME SIMPLE RAY- TRANSFER MATRICES

Translation matrix:

\

e[ 4] §

e

Refraction matrix,
spherical interface:

0 R
C A ~
™ b n\n
B
(+R):convex

( R) :concave
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Refraction matrix,
planc interface:
} o €
M ”n
. n I n'
R R,
Thin dens matrix: . -
e —
1 0
M 1 . n n' n
f

1 n n(l 1 ) (+f) : convex
n

f R, R; (- f):concave
Spherical mirror
matrix:
1 0
M 2
R 1
Matrix Methods |n Paraxial Optics (+R) : convax
( R) :concave
A /= r-]
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Significance of system matrix elements

2 :{ 4 B }{yo }
o, C D | ¢
a)If D=0— a, = Cy, independent of

All the rays leavoing the input plane will

have the same angle at the output plane.

Then input plane is the first focal plane.

b)IfA=0—-y, = Bo,
means y, is independent of y, that means

all the rays departing input plane have the
same height at the output plane.
Qutput plane is the second focal plane.

v

Optical Optical
clements clements
¢ Optical o 4 Optical
sysiem sysiem
%, Input Output Input Output
| plane plane plane plane
(&) (b}
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Significance of system matrix elements

¢) If B=0— y, = Ay, All the points
leaving the input plane at hight y, will
arrive the output plane at height y .

Output plane is image of the input plane.

dHIfC=0>a ,=Da, independent of y
Input rays of all in one direction will
produce output rays all in another direction.
This is called telescopic system.

Y . . .
A ==L corresponds to linear magnification.
Yo . {yr}_[ 4 B }{yo_
a, C D o]
. T / .
: Optical Optical
7 plica Y, » plica
, elkements 7 elements 2N
: -3 . \
tion. le Optical o Optical
) system sysiem
! Input s Output Input ’ Output
plane plane plane plane
m. (c) (d)
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Optical cavities
* Optical cavities are composed of two face-to-face
reflectors with space in between. They are:

— Stable if the light bounces back an forth between the
reflectors without escaping from the cavity

— Unstable if the light “walks off” from the cavity after
few round trips

— Conditionally stable if the stability depends on very
tight alignment requirements

(a)
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Unfolding the optical systms

* Any reflection in an optical system can be
unfolded.

* Unfolding converts a reflection problem to a
translation and refraction problem so we
don’t have to deal with the constant change of
direction of propagation of light.
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Equivalent lens waveguide
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RTM of a cavity

Choose the unit cell & construct the RTM of the unit cell

re |1 o] v o1 a] o
- __—l/fll 0 1 -1/ f, 1 0 1 r

Fourth Third Second First Incident

- - (1—i] d+d(1—i]
| 2 . [}

| ] _L_L(l_iJ (1_1J(1_1)_1
ARAS AT R)
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Finding the difference equation for the
rays succeeding through a unit cell

T _| 4 B T
r's+1 C D r's

= A B =~ 4r)

r' =Cr.+Dr' =Cr, +2(r —Ar)
y ; ; * B

s+1 s

%

s+2 s+1

one step further — r' = %(r — Ar )
1 D
E(rsn - Ars+1) = C’:v + E(r

s+1

r 2—2(A+D)r ,tr=0
s+ 2 s+ s
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— Ar,) andwith AD-CB=1

Desired solutions
Second order difference equation relating the successive heights
A+Dj
r. +r=0

s+1 N

2

For the good solutions magnitude of 7 stays below a maximum

of the rays in the cavity —r,_, — 2(

X

foranysor: r<r
ma

For such a solution the beam will not "walk off"" the cavity.

2/27/12 Matrix Methods in Paraxial Optics 28
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Desired solutions

A+ D . . s N
r.— 2( )r_ +r =0; A trial solution: r =7 (e’e) =re?
s+2 2 s+1 s K 0 0

where 7 is specified by the initial conditions

O s+ A+D i0(s+ i
roeje(’ 2)—2[ 5 ]roeje( l)+roe’9S=O

re™ {e"w —2(—A;Djeje + 1}= 0— (eje)z —2[A;Djejg +1=0

[S—
A non-zero
term in general

A quadratic equation

1/2 1/2

o _A+D [A+DT_1 _A+D 1_(A+DJ2
B B - B 2

2 2
we can use these to construct our real solution.
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Stability condition
We combine our solutions with their complex conjugate for a real solution:
{’; - roelse + r()*e_jso

r=r sin(SG + a) <« A real solution

But we have to make sure e¢’’ is complex so that summing it with its complex-

conjugate will give us a real number. That also means 0 is real which means:

5 1/2
e’ =cosf+ jsinf = A;Dijll—(A;DJ ] -

W_J
Real
Real
—1s(cos9=A;D]s1 or —1+1$(A+D+1]31+1 N
Stability condition for cavity - 0 < A+D+2 <1

4
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Stability condition for spherical cavity

A+D+2)S1

The stability condition for a cavity: 0 < ( 2

Recall our cavity with spherical mirrors:

f
_L_L[l_ij (1_1J(1_1)_1
AN TR

Stability condition for a cavity with spherical morrors :

I
VY
—
|
SNEN
N—
Y
+
Y
VR
—_—
|
MY
Ne—
1
© w
I

A+D+2 1 1_1_1{1_1}(1_1]” :[l_i}(l_i]
] A A S 2\ 2
A ———

d d
0<gg, <l g1=1—E& g2=1—E&RI=2f1 &R, =2f,

1
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Graph of the

stability condition
0<gg, <1
d
g1 = I_E
d
=]1-—
& R,
A very important and

useful equation and
graph for determining
stability of a cavity by
a glance.

2/27/12 Matrix Methods in Paraxial Optics
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Unstable region

The unstable region is described by

[+j2
>1
2

Shown by cross hatched region.

This region is used for design
of high-power lasers.

The walked off rays become the
output. Chapter 12 talks about
these resonators.
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Example of ray tracing in stable cavity
A repetitive ray path

A cavity with R, = and R,

Initial ray height = —7;; the initial angle is zero.

Initial ray hits the spherical mirror, reflection passes through the f,
Reflection from the flat mirror alng the radius hits the spherical
mirror and back at itself forever.

Is this cavity stable?
d
=1-—=1
g R,
d 3
S
8.8, =1/4<1
Yes

What is ther,, ? 27, (show it)
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Lens-waveguide equivalent

We have many choices for
the unit cell. Two of them

are shown in the figure
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Solution for repetitive ray path cavity

| ! d oo g, 1-d/f d+d(1-d/f)
0 1 —l/f2 1o 1 ~1/f 1-d/f

Third

Second First RTM of the first choice unit cell

=reM + A S0
The two form of the solution: o
r=r, sin(s6+)

172
o A+D A + D d 3
e’ = +j =cosO =t jsinf with —=—
2 R, 4
A+ D 1 2
cosf = —1—1=1— d =1—2(—)=——e9=—”=120°
f R, /2 4 2 3
2
using the initial conditions r = —, —2C=0 0y ) = f sm(—”s - g)
o To
s=0—>rs=—r0; s=1—>rX=5; S_Z—)r—E s:3—)rS:—rO
back to the original value of the start of the round trip.
2/27/12 Matrix Methods in Paraxial Optics 36
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Solution for repetitive ray path cavity

1 2d 10 1-2d/f 2d
T = -7 =
0 1 || -l/f 1 “1/f 1
| \

Second First

RTM of the second choice unit cell
— ipé * —ip
) r,=nev t+re
The two form of the solution:

r, = sin(pf+ o)

1/2
o A+D A+DY d 3
el = +j 1—( =cos0 * jsinO with —=—
2 2 R, 4

2

cosg=AFD_1f, 2d)_,_ _d =1—2(§j=—1+9=2—”
2 277 R, /2

. L . ; . (27 T
using the initial conditions r = r, —2 r,=2n sm(? p— gj
p=0-r,=r; p=1->r=2r;, p=2-r=-1;
back to the original value of the start of the round trip. This choice of the

unit cell does not give any information about the ray at the flat mirror.
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How many roundtrips to get back
to the original position?

For any cavity we can find the number of round trips it takes to

get the beam to its original position.

N

A+ D
Ty = Fnax Sin(s Q + Ot) where 9=cos"( )

phase gain per round trip
Assume s increases by m units to get back to the original position.
Total phase gain has to be integer of 27

m6 =2xn and to guarantee 6<7 we require m > 2n

For our solution: 7, =, sin(z?ns - Ej - m%r =2nn—>m=3n
n=1-— m= 3 and m > 2n holds so after 3 round trips

For The other solution m is the same since 0 is the same.
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Initial conditions: Stable cavities

r I
S I s —>—1£(cos€=A+D)Sl—>9=cos"[7A+D]
r'.ﬁ»] C D rvS 2

Stability condition
Solution: 7, = sin (s9 + a); Initial (s = 0) Ray position: 7, = a; Ray slope: r'| = m

s=0—>a= ‘r ‘sin((x)
max

s=l-n= sin(9+ot)= ‘r ) ‘sin@cosa+ r |cosBOsina
max max max
Also: 1, = Ar,+ Br' = Aa+ Bm
. A+ D
Then 1 =Aa+Bm=|r, |sinfcosc + a
1 A-D a asin@
rolcosa=——a + Bm |=——cosa > tangt = ————
! sin6 2 sino A-D
a——+ Bm
2
2 1/2
| A+ D
2 a
The phase angle for the stable solution is: o = tan™ andr_ =—
_ max
a A-D +Bm sino
2/27/12 Matrix Methods in Paraxial Optics 39

max

Initial conditions: Stable cavities
Example

For the previous problem:

a=-r, & m=0
B ,\1/2 T B ,\1/2 T
A+ D 2r
all- —r| 1= —
2 ° 3 -
_ -1 _ -1 _ -1 _
a=tan 1-D = tan = tan (—oo) ==
a>—=+ Bm " (0)+B(0)
a =, —7

- sino B sin(—n/2) =l —h

For the second solution

a=-r, & m = need to know it

2/27/12 Matrix Methods in Paraxial Optics 40
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Initial conditions: unstable cavities

. . A+D s
Back to the difference equation: r 2 rotr=0 letr =r (F )

s+2 2 s+1

2 1/2
A+ D A+ D
Solutions £= 2 +|:[ 2 j_1:|
rF?{FZ—Z[A+DJF+1:|:OM>

r=r(F) +r(F)

For unstable cavities ‘(A + D) / 2‘ > 1 that means one of the solutions F, >1 or F, >1
After few roundtrips ray's position is is mostly increasing exponentially due to the
larger solution and gets further away from the axis: r, ~ 7, (F> )‘v

Fors=0—7r =a=r+r, & Fors=1—rn=ad+Bm=rF +1,F,

Ll a( - 4)- 5]

r =
S I P
We can find the r, and r,by solving .
n=rlelhm4)-5.]
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Astigmatism

When a material body is placed in the path of a ray and is tilted we must
account for the change in the optical path in two orthogonal directions
Optical paths traversed by the two rays through a Brewester angle window is:

(n2 + 1) (n2 + 1)”2
dy =t T & dx =t n—4
For the Brewester abgle: tan6, =n
Since d, # d, we have astigmatism.

Index of refraction n

Top view

(a)
2/27/12 Matrix Methods in Paraxial Optics 42
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Astigmatism and ring lasers
* Astigmatism plays a critical role in dye-laser cavities
* It leads to elliptical beams.

* Focal lengths in xy and xz planes is different.

f.= fcosO
f,=f/cos6
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Continuous lens-like media

2/27/12 Matrix Methods in Paraxial Optics 44
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Propagation of ray in an
inhomogeneous medium

2/27/12 Matrix Methods in Paraxial Optics 45

Ray matrix for continuous lens

SO

J ——7—=_ )
(T———
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